分析了支持向量机(supportvectormachine,SVM)目前主要存在的问题和参数选择对分类性能的影响后,提出了以改进粒子群算法优化SVM关键参数的优化SVM算法。
将加入拥挤度因子的微粒群算法引入到SVM中,在不牺牲泛化性能的前提下,对其参数进行优化,增加了SVM初始化参数的多样性,减慢了局部搜索,促进其在全局范围内的寻优搜索,以有效克服SVM算法过分依赖初始值和容易陷入局部极小值的缺点,并利用由粗到精的策略构造多层SVM人脸表情分类器,在提高准确率的基础上加快分类的速度。
实验证明,新算法具有速度快、准确率高的优点。
1
fisher线性判别分类器的设计实验源码
1
基于贝叶斯及KNN算法的newsgroup文本分类器,eclipse工程程序运行方法:用eclipse打开工程,并将newsgroup文档集解压到F:\DataMiningSample\orginSample目录下,同时在F:\DataMiningSample\下建好如附件“F盘DataMiningSample目录下的数据子目录结构”图中的目录,停用词表也放在"F:/DataMiningSample/目录下,即可运行eclipse工程。
程序会依次执行数据预处理、贝叶斯分类、KNN分类,输出10次交叉验证实验的分类结果、准确率统计及混淆矩阵。
1
matlab环境下使用PSO算法对SVM多分类器的参数进行优化的案例,代码有详细的注释,另有一篇博客对算法的大致过程有介绍.
2025/1/14 14:49:44 44.33MB matlab pso svm
1
在脑-机接口研究中,二维光标控制由于易实现、量化可以作为测试新范式和新算法原型的特点,一直是研究的热点。
基于减小使用者的控制难度,实现光标在二维平面内任意位置移动的目标,我们仅使用两类运动想象就实现了光标的二维控制。
通过把分类器的输出概率映射到我们设计的旋转控制坐标系中,实现光标二维移动。
结合最后设计的一种固定5目标的验证实验,邀请4人参与该实验,从他们的控制效果上,可以得到控制策略简单有效的结论。
1
自己训练的opencv基于haar特征的adaboost级联分类器模型,里面包含30个model,不同正负样本比例、不同层数。
2.0-2500x7500,2.1-2500x6300,2.2-2500x5000,2.3-1500x4000-hr0.99-fa0.5
2025/1/8 17:58:51 1.59MB 车辆检测 adaboost 级联分类器 opencv
1
提取有效的特征一直是笔迹鉴别的关键问题,针对传统Gabor滤波器特征提取方法存在的不足,充分利用Gabor滤波系数间的相关关系,提出一种融合全局特征和局部特征的特征提取方法。
该方法先通过字符笔画的方向梯度直方图(HOG)来优化Gabor滤波器的角度参数,再利用高斯马尔科夫随机场(GMRF)模型对Gabor滤波图像中的不同局部结构信息进行描述,最终得到笔迹图像的整体特征。
以楷书四大家的真迹样本和收集的英文手稿作为实验数据,采用最小加权欧式距离分类器对笔迹样本进行分类,通过五重交叉验证法分别得到97.6%和88.3%的正确分类率,表明该方法提取的特征具有较强的笔迹表征能力,是一种有效的笔迹特征提取方法。
2025/1/3 11:20:23 932KB 论文研究
1
这是opencvsvm图像分类的整个工程代码,在VS2010下打开即可。
整个工程文件以及我的所有训练的图片存放在这里,需要的可以下载,自己在找训练图片写代码花了很多时间,下载完后自行解压,训练图片和测试图片可以从这免费下载http://download.csdn.net/detail/always2015/8944959,projectdata文件夹直接放在D盘就行,里面存放训练的图片和待测试图片,以及训练过程中生成的中间文件,现在这个下载object_classfication_end则是工程文件,我用的是vs2010打开即可,下面工程里有几个要注意的地方:1、在这个模块中使用到了c++的boost库,但是在这里有一个版本的限制。
这个模块的代码只能在boost版本1.46以上使用,这个版本以下的就不能用了,直接运行就会出错,这是最需要注意的。
因为在1.46版本以上中对比CsSVM这个类一些成员函数做了一些私有化的修改,所以在使用该类初始化对象时候需要注意。
2、我的模块所使用到的函数和产生的中间结果都是在一个categorizer类中声明的,由于不同的执行阶段中间结果有很多个,例如:训练图片聚类后所得到单词表矩阵,svm分类器的训练的结果等,中间结果的产生是相当耗时的,所以在刚开始就考虑到第一次运行时候把他以文件XML的格式保存下来,下次使用到的时候在读取。
将一个矩阵存入文本的时候可以直接用输出流的方式将一个矩阵存入,但是读取时候如果用输入流直接一个矩阵变量的形式读取,那就肯定报错,因为输入流不支持直接对矩阵的操作,所以这时候只能对矩阵的元素一个一个进行读取了。
3、在测试的时候,如果输入的图片太小,或者全为黑色,当经过特征提取和单词构造完成使用svm进行分类时候会出现错误。
经过调试代码,发现上述图片在生成该图片的单词的时候所得到的单词矩阵会是一个空矩阵,即该矩阵的行列数都为0,所以在使用svm分类器时候就出错。
所以在使用每个输入图片的单词矩阵的时候先做一个判断,如果该矩阵行列数都为0,那么该图片直接跳过。
2024/12/26 7:01:54 37.36MB SVM图像分类
1
因为需要做opencv苹果识别,发现网上并没有相关资源,所以花了两天时间整理了2000多个分类器正样本以及其解释文件(解释文件太难弄了)
2024/12/23 14:13:37 45.81MB opencv 分类器 样本 苹果
1
openCV人脸识别中正面人脸分类器之一,网上有haarcascade_frontalface_alt2.xml,但是haarcascade_frontalface_alt.xml下载地方比较少,本人在VS2010上测试过可以用。
现在贡献给各位网友!
2024/12/11 8:36:20 898KB opencv harr分类器
1
共 271 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡