上传者: weixin_39840387
|
上传时间:2025/1/27 13:07:22
|
文件大小:1.13MB
|
文件类型:pdf
论文研究-基于优化支持向量机的人脸表情分类.pdf
分析了支持向量机(supportvectormachine,SVM)目前主要存在的问题和参数选择对分类性能的影响后,提出了以改进粒子群算法优化SVM关键参数的优化SVM算法。
将加入拥挤度因子的微粒群算法引入到SVM中,在不牺牲泛化性能的前提下,对其参数进行优化,增加了SVM初始化参数的多样性,减慢了局部搜索,促进其在全局范围内的寻优搜索,以有效克服SVM算法过分依赖初始值和容易陷入局部极小值的缺点,并利用由粗到精的策略构造多层SVM人脸表情分类器,在提高准确率的基础上加快分类的速度。
实验证明,新算法具有速度快、准确率高的优点。
本软件ID:11403642