本资源是ISODATA聚类算法的matlab代码,其中包括isodata.m(ISODATA算法代码,其中包括了合并分裂等一系列子函数)、provaisodata.m(算法实例调用代码)和dades.mat(存放实例数据变量的文件)三个文件,并且每个函数都有详细的中文注释,而非原来的西班牙语注释。
ISODATA算法是在k-均值算法的基础上,增加对聚类结果的“合并”和“分裂”两个操作,并设定算法运行控制参数的一种聚类算法。
全称:IterativeSelforganizingDataAnalysisTechniquesAlgorithm即:迭代自组织数据分析算法。
“合并”操作:当聚类结果某一类中样本数太少,或两个类间的距离太近时,进行合并。
“分裂”操作:当聚类结果某一类中样本某个特征类内方差太大,将该类进行分裂。
2024/8/6 22:07:29 9KB ISODATA 聚类算法 中文注释 matlab
1
surf算法在opencv3上实现,自己实现代码不用调用任何包。
2024/8/6 12:18:12 8.84MB SURF opencv3 vs2017
1
以一个能识别数字0~9的语音识别系统的实现过程为例,阐述了基于DTW算法的特定人孤立词语音识别的基本原理和关键技术。
其中包括对语音端点检测方法、特征参数计算方法和DTW算法实现的详细讨论,最后给出了在Matlab下的编程方法和实验结果。
1
骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内。
骨架提取,也叫二值图像细化。
这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示。
morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数。
我们先来看Skeletonize()函数。
格式为:skimage.morphology.skeletonize(image)输入和输出都是一幅二值图像。
例1:  生成一幅测试图像,上面有三个目标对象,分别进行骨架提取,结果如下:例2:利用系统自带的马图片进行骨架提取 medial_axis就是中
1
乳腺癌病理图像的自动分类具有重要的临床应用价值。
基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。
为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。
实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性
2024/8/3 5:11:41 632KB 深度学习 图像识别
1
用于项目的现代Web入门套件总览WebStarterKit(WSK)-是用于Web开发的自以为是的样板。
用于在许多设备上构建出色体验的工具。
对于行业的专业人士和新手来说都是一个坚实的起点。
目录浏览器支持目前,我们正式旨在支持以下浏览器的最后两个版本:Chrome边缘火狐浏览器苹果浏览器的iOSChromeAndroid这并不是说WSK不能在比所反映的版本更旧的浏览器中使用,而仅仅是我们将重点放在确保我们的布局在上述版本中运行良好。
产品特点特征概要轻松启动我们不使用响应式样板。
您可以自由决定以哪种方式响应网站。
只需从src/html开始使用index.html。
HTML模板使用模板化html文件。
Sass支持轻松地将编译为CSS,带来对变量,mixin等的支持(运行npmrundev或gulp进行项目编译)。
在我们的WSK中,我们使用版本的编译器并遵循。
PostCSS支持PostCSS连接最有用的插件库,以优化CSS。
在我们的WSK中,我们使用,,等。
JavaScriptES6+支持可选Ja
2024/8/2 10:31:07 45KB javascript gulp html npm
1
算法设计方法的基本思想及其适用特征——分治法、动态规划法、贪心法、回溯法、分支限界法。
1
Kalman滤波器理论与应用:基于MATLAB实现》以Kalman滤波器为主要介绍对象,包含基本原理、推导方法及其在跟踪系统中的应用,同时配套MATLAB源程序。
具体内容包括Kalman滤波器、扩展Kalman滤波器、不敏Kalman滤波器及其在RFID系统的跟踪应用研究。
  《Kalman滤波器理论与应用:基于MATLAB实现》凝练了作者二十余年来对Kalman滤波器基础理论及在目标跟踪应用的研究成果,具体内容包括:根据目标运动特征进行自调整参数的“自适应动力学模型”、不敏变换的性能分析、RFID跟踪系统的测量方程及其仿真平台等。
  《Kalman滤波器理论与应用:基于MATLAB实现》可作为自动化、电子信息、计算机应用、控制科学与工程、信号处理、导航与制导等相关专业高年级本科生和研究生的教材,也可供相关领域的工程技术人员和研究人员参考。
2024/7/31 3:40:46 3.98MB Kalman滤波器 MATLAB实现 卡尔曼滤波
1
现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。
现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。
    假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。
我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。
    μjμj的表达式为:μj=1Nj∑x∈Xjx(j=0,1)μj=1Nj∑x∈Xjx(j=0,1)    ΣjΣj的表达式为:Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)    由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。
由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)wargmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w    我们一般定义类内散度矩阵SwSw为:Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T    同时定义类间散度矩阵SbSb为:Sb=(μ0−μ1)(μ0−μ1)TSb=(μ0−μ1)(μ0−μ1)T    这样我们的优化目标重写为:argmaxwJ(w)=wTSbwwTSwwargmax⏟wJ(w)=wTSbwwTSww    仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量!而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!    注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1),也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
2024/7/30 21:57:26 3KB MATLAB 人脸识别 LDA knn
1
从地形分析的复杂性角度,可以将地形分析分为两大部分:一部分是基本地形因子(包括坡度、破向、粗糙度等)的计算,另一部分是复杂的地形分析包括可视性分析、地形特征提取、水文系特征分析、道路分析等。
  其中坡面地形因子分析是数字地形分析的最基础的内容。
2024/7/30 5:21:25 4.09MB 数字地形分析
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡