试验实现为了基于钠铝硼硅酸盐玻璃的近红外PbSe量子点光纤放大器(QDFA),并在钠铝硼硅酸盐玻璃基底中,经由优化熔融-退火法的热处置前提,制备中间粒径为4.08~5.88nm的PbSe量子点光纤。
该QDFA由量子点光纤、波分复用器、阻止器、抽运源等组成。
试验评释:QDFA在1260~1380nm区间实现为了信号光的放大,增益波长区间与量子点的粒径大小无关。
当输入信号光功率为-17dBm时,输入信号光增益为16.4dB,-3dB带宽达80nm。
试验视察到明晰的鼓舞阈值以及增益饱以及征兆。
与老例的掺铒光纤放大器以及少模掺铒光纤放大器相比,本钻研的QDFA的鼓舞阈值低、带宽敞重办奔放、噪
2023/3/26 17:17:34 12.61MB 光纤光学 PbSe量子 量子点玻 增益带宽
1
本文报道了一种在铜片上采用原位生长法制备的Cu2O-AgSERS基底的方法。
通过优化制备Cu2O的退火温度和时间及制备Cu2O-Ag的AgNO3浓度和反应时间,获得的原位生长Cu2O-Ag基底具有良好的拉曼增强效果。
通过对基底的表征及仿真模拟,发现基底表面构成的凹型空间和均匀密布的AgNPs提供了丰富的SERS“热点”,且该基底具有较好的疏水性,因此SERS活性显著。
该基底对多种违禁药物都有很好的灵敏度,拉曼强度与药物浓度具有良好的定量关系,孔雀石绿、恩诺沙星和呋喃西林的检测线分别为4.9nM、0.72μM和0.12μM。
本文提出的基底制备方法具有工艺简单、成本低且SERS活性高等优点,在环境监测领域具有较好的应用前景。
1
通过固相React法合成了一系列掺杂Eu3+的红色荧光粉MMgP2O7(M=Ca,Sr,Ba)。
X射线粉末衍射(XRD)分析证明了纯CaMgP2O7,SrMgP2O7和BaMgP2O7相的形成。
MMgP2O7(M=Ca,Sr,Ba):Eu3+荧光粉的光致发光光谱在约400nm处显示出很强的激发峰,这与紫外发光二极管的特征发射(350-400nm)耦合。
CaMgP2O7:Eu3+,SrMgP2O7:Eu3+和BaMgP2O7:Eu3+荧光粉显示出强的发射带,分别在612、593和587nm处达到峰值。
由于Ba2+(0.142nm),Sr2+(0.126nm),Ca2+(0.112nm),Mg2+(0.072nm)和Eu3+(0.107nm)之间离子大小的差异,Eu3+离子有望替代CaMgP2O7中的不同位点。
,SrMgP2O7和BaMgP2O7晶格。
2015/6/12 20:17:45 738KB phosphors; photoluminescence; LED solid-state
1
反射镜作为光子集成电路的基本元件,被应用于量子通信、智能电网、航空航天等多种领域。
高反射率、低温度敏感性的片上光反射镜可以大大简化光子集成电路系统,提高光子集成电路的可靠性和稳定性。
因而,提出了一种基于绝缘体上硅的高反射率、低温度敏感性片上光反射镜方案。
该方案采用Sagnac环结构,可在3.41nm波长范围内实现超高反射率(反射率大于90%),在32.85nm波长范围内实现高反射率(反射率大于80%)。
通过片上微型热电极对该反射镜进行加热,结果表明,当微型热电极的功率从0mW逐渐升高至6mW时,在1566.5~1568.58nm波长范围内反射镜的波长漂移量小于0.045nm,反射率变化小于0.19dB。
该反射镜具有尺寸小、质量轻、制造简单、反射率高、损耗小、温度不敏感等优势,可广泛应用于激光器、微波光子滤波器、光传输网等通信和信号处理领域。
2017/7/16 13:38:06 7.76MB 集成光学 光反射镜 Sagnac环 硅光子学
1
您是否有入睡困难?睡前在平板电脑上玩耍时,您的孩子是否活动过度?您在深夜使用智能手机或平板电脑吗?暮光可能是您的解决方案!警告:AndroidO不允许该应用程序再包含您的通知。
.最近的研究表明,睡觉前暴露于蓝光下可能会使您的自然(昼夜节律)节拍扭曲并导致无法入睡。
原因是您眼中的感光细胞,称为黑素。
该受体对在460-480nm范围内的窄带蓝光敏感,这可能会抑制褪黑激素的产生-褪黑激素是负责您健康睡眠觉醒周期的激素。
在实验科学研究中,研究表明,普通人在平板电脑或智能手机上阅读了几个小时,然后睡觉时间才发现他们的睡眠延迟了大约一个小时。
在黄昏的应用程序,使您的设备屏幕适应一天
2018/11/13 16:34:54 6.01MB Twilight Pro
1
您是否有入睡困难?睡前在平板电脑上玩耍时,您的孩子是否活动过度?您在深夜使用智能手机或平板电脑吗?暮光可能是您的解决方案!警告:AndroidO不允许该应用程序再包含您的通知。
.最近的研究表明,睡觉前暴露于蓝光下可能会使您的自然(昼夜节律)节拍扭曲并导致无法入睡。
原因是您眼中的感光细胞,称为黑素。
该受体对在460-480nm范围内的窄带蓝光敏感,这可能会抑制褪黑激素的产生-褪黑激素是负责您健康睡眠觉醒周期的激素。
在实验科学研究中,研究表明,普通人在平板电脑或智能手机上阅读了几个小时,然后睡觉时间才发现他们的睡眠延迟了大约一个小时。
在黄昏的应用程序,使您的设备屏幕适应一天
2015/6/27 11:40:34 6.01MB Twilight Pro
1
为了获得高反复频率的飞秒激光脉冲,将突发运行模式引入飞秒碟片再生放大系统中。
通过将再生放大器的腔长设计为9.3m,激光系统输出了接近衍射极限的激光脉冲,且激光脉冲的反复频率为电光调制频率的5倍。
在电光调制频率为5kHz、吸收的抽运功率为98W的条件下,获得了最高输出功率为10.7W、光谱半峰全宽为1.18nm、脉冲宽度为777fs的双曲正割脉冲输出。
再生放大器的光-光转换效率随着电光调制频率的增加而增加,从频率为0.5kHz时的12.4%增加到频率为5kHz时的25.3%。
激光的输出稳定性在18~20℃的温度区间内随着水冷温度的降低而提高,激光系统输出功率的均方根从20℃时
1
为了获得高反复频率的飞秒激光脉冲,将突发运行模式引入飞秒碟片再生放大系统中。
通过将再生放大器的腔长设计为9.3m,激光系统输出了接近衍射极限的激光脉冲,且激光脉冲的反复频率为电光调制频率的5倍。
在电光调制频率为5kHz、吸收的抽运功率为98W的条件下,获得了最高输出功率为10.7W、光谱半峰全宽为1.18nm、脉冲宽度为777fs的双曲正割脉冲输出。
再生放大器的光-光转换效率随着电光调制频率的增加而增加,从频率为0.5kHz时的12.4%增加到频率为5kHz时的25.3%。
激光的输出稳定性在18~20℃的温度区间内随着水冷温度的降低而提高,激光系统输出功率的均方根从20℃时
1
我们提出并演示了一种基于pn结的反向击穿的快速有效的硅热光开关。
通过将pn结嵌入到波导中心而直接加热硅波导,受益于对20μm半径的微环谐振器进行330/450ns的开/关时间快速切换和0.12nm/mW的有效热调谐,表明只有8.8兆瓦的高质量因数。
亩这里的结果显示出在未来的光学互连中的巨大应用潜力。
2019/4/12 21:24:37 418KB 研究论文
1
提出并演示了一种用于同时测量溶液中的折射率和温度的全光纤传感器。
传感头包含一个核心偏移马赫曾德尔干涉仪(MZI)和光纤布拉格光栅(FBG)。
MZI的干涉条纹和FBG的布拉格波长会随着环境折射率(RI)和/或温度的变化而移动。
实验结果表明,传感器的RI灵敏度和温度灵敏度分别为13.7592nm/RI和0.0462nm/°C。
它的低制形成本,简单的配置和高灵敏度将在化学和生物传感领域具有诱人的潜在应用。
2018/8/7 15:13:40 1.1MB Fiber sensor; Refractive index
1
共 43 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡