TIAPortalv12全部软件BT下载TIAPortalv12全部软件BT下载包括软件如下,共20多GB,可分开下载,如下Simatic_EKB_Install_2013_03_01_test.exe2.47MB(2597376)SIMATIC_S7_PLCSIM_V12.exe1.26GB(1353195088)SINAMICSStartdrivev12.iso502.73MB(527155200)STEP7Professionalv12.iso4.46GB(4791994368)WinCCBasicv12.iso4.39GB(4718673920)WINCCComfortAdvancedv12.iso4.64GB(4986032128)WinCCProfessionalv12.iso4.96GB(5331634176)
2025/9/23 1:31:39 102KB 西门子 博途 Portalv12
1
在中国的地理信息系统(GIS)和测绘领域,坐标系的转换是一项重要的任务。
本文将深入探讨“经纬度与我国54、80大地坐标转换的小工具”所涉及的关键知识点。
我们要了解“54坐标系”和“80坐标系”的概念。
54坐标系,全称为1954年北京坐标系,是基于苏联1942年普尔科沃大地坐标系的一种坐标系统。
在20世纪50年代,中国主要采用这一坐标系进行测量工作。
而“80坐标系”,即1980西安大地坐标系,是中国在1978年全国天文大地网平差后建立的新坐标系统,它采用了国际地球自转服务(IERS)推荐的地极原点和地球参考椭球模型,更符合现代地理空间数据的需求。
经纬度是我们最常见的地理位置表示方式,由经度和纬度两个参数组成。
经度表示东西方向的位置,以本初子午线(通过英国格林尼治天文台的经线)为0度,向西至180度,向东至180度。
纬度则表示南北方向的位置,以赤道为0度,向北至90度为北极,向南至90度为南极。
54坐标系和80坐标系与经纬度之间的转换通常涉及到椭球参数、投影方法和坐标平移等多个步骤。
这两个坐标系都基于特定的椭球模型,54坐标系使用的是克拉索夫斯基椭球,80坐标系使用的是国际大地测量与地球物理联合会(IUGG)推荐的克拉克1866椭球。
由于地球不是一个完美的球体,而是椭球形状,因此不同的椭球模型会导致坐标有所不同。
转换过程一般包括以下步骤:1.**椭球参数转换**:每个坐标系都有自己的椭球参数,包括长半轴(a)和扁平率(f),需要根据这些参数调整经纬度坐标。
2.**坐标平移**:由于历史原因,54坐标系和80坐标系在原点上有差异,需要进行平移操作。
3.**投影转换**:由于地球表面是曲面,而地图通常是平面,所以需要将经纬度坐标通过特定的投影方法(如高斯-克吕格投影)转换为平面坐标。
4.**系数计算**:转换过程中会涉及一系列的数学公式和转换系数,确保从一个坐标系到另一个坐标系的准确转换。
这款名为“经纬度与我国54、80大地坐标转换的小工具”的软件,就是基于以上理论,提供了便捷的转换功能。
用户只需要输入经纬度坐标,程序会自动完成上述计算,给出对应的54或80坐标系结果。
这对于GIS工作者、测绘人员以及需要处理地理位置数据的用户来说,是一个非常实用的工具。
需要注意的是,随着现代GIS技术的发展,中国已经逐步推广使用更加精确的WGS84坐标系(世界大地坐标系)和CGCS2000(中国2000国家大地坐标系)。
CGCS2000基于最新的地球椭球模型,与WGS84兼容,更适合现代导航和定位需求。
不过,对于历史数据的处理,54和80坐标系的转换仍然具有重要价值。
总结起来,这个小工具帮助用户跨越了不同坐标系之间的鸿沟,简化了复杂的数学计算,提高了工作效率,体现了GIS技术在实际应用中的灵活性和实用性。
2025/9/22 20:20:50 117KB 54、80坐标系
1
完整英文版(20页),本标准适用于电子烟和类似的产生蒸汽的装置,旨在从电子液体中产生气雾,供吸入消费。
它适用于所生产的气溶胶中含有或不含有尼古丁的装置。
本标准也适用于打算与电子烟和类似的产气装置一起使用的电子液体容器、灌装装置和附件、电气和其他。
2025/9/20 20:38:11 4.78MB cen 17287 电子烟 cigarette
1
Java实现Des加密(不用加载包),有完整S盒子。
部分代码如下:ackagedesJava;importjava.util.*;publicclassDes{ byte[]bytekey; publicDes(StringstrKey){ this.bytekey=strKey.getBytes(); }//声明常量字节数组 privatestaticfinalint[]IP={58,50,42,34,26,18,10,2,60,52, 44,36,28,20,12,4,62,54,46,38,30,22,14,6,64,56,48, 40,32,24,16,8,57,49,41,33,25,17,9,1,59,51,43,35, 27,19,11,3,61,53,45,37,29,21,13,5,63,55,47,39,31, 23,15,7};//64 privatestaticfinalint[]IP_1={40,8,48,16,56,24,64,32,39,7, 47,15,55,23,63,31,38,6,46,14,54,22,62,30,37,5,45, 13,53,21,61,29,36,4,44,12,52,20,60,28,35,3,43,11, 51,19,59,27,34,2,42,10,50,18,58,26,33,1,41,9,49, 17,57,25};//64 privatestaticfinalint[]PC_1={57,49,41,33,25,17,9,1,58,50, 42,34,26,18,10,2,59,51,43,35,27,19,11,3,60,52,44, 36,63,55,47,39,31,23,15,7,62,54,46,38,30,22,14,6, 61,53,45,37,29,21,13,5,28,20,12,4};//56 privatestaticfinalint[]PC_2={14,17,11,24,1,5,3,28,15,6,21, 10,23,19,12,4,26,8,16,7,27,20,13,2,41,52,31,37,47, 55,30,40,51,45,33,48,44,49,39,56,34,53,46,42,50,36, 29,32};//48 privatestaticfinalint[]E={32,1,2,3,4,5,4,5,6,7,8,9,8,9, 10,11,12,13,12,13,14,15,16,17,16,17,18,19,20,21,20, 21,22,23,24,25,24,25,26,27,28,29,28,29,30,31,32,1};//48 privatestaticfinalint[]P={16,7,20,21,29,12,28,17,1,15,23, 26,5,18,31,10,2,8,24,14,32,27,3,9,19,13,30,6,22, 11,4,25};//32 privatestaticfinalint[][][]S_Box={//S-盒 {//S_Box[1] {14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7}, {0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8}, {4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0}, {15,12,8,2
2025/9/19 13:57:15 212KB java des
1
简洁模板,文档模板,文档介绍模板,系统管理介绍模板,类似于菜鸟编程网站样式,包含20多个页面
2025/9/18 17:54:37 1.4MB js css h5
1
1-19长度为100字节的应用层数据交给传输层传送,需加上20字节的TCP首部。
再交给网络层传送,需加上20字节的IP首部。
最后交给数据链路层的以太网传送,加上首部和尾部工18字节。
试求数据的传输效率。
数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。
若应用层数据长度为1000字节,数据的传输效率是多少?解:(1)100/(100+20+20+18)=63.3%(2)1000/(1000+20+20+18)=94.5%2-16共有4个站进行码分多址通信。
4个站的码片序列为A:(-1-1-1+1+1-1+1+1)B:(-1-
2025/9/10 15:31:32 171KB 计算机网络
1
一、课程设计目的在多道程序环境下,进程同步问题十分重要,通过解决“生产者-消费者”问题,可以帮助我们更好的理解进程同步的概念及实现方法。
掌握线程创建和终止的方法,加深对线程和进程概念的理解,会用同步与互斥方法实现线程之间的进行操作。
在学习操作系统课程的基础上,通过实践加深对进程同步的认识,同时,可以提高运用操作系统知识解决实际问题的能力;
锻炼实际的编程能力、创新能力及团队组织、协作开发软件的能力;
还能提高调查研究、查阅技术文献、资料以及编写软件设计文档的能力。
二、课程设计内容模拟仿真“生产者-消费者”问题的解决过程及方法。
三、系统分析与设计1、系统分析在OS中引入进程后,虽然提高了资源的利用率和系统的吞吐量,但由于进程的异步性,也会给系统造成混乱,尤其是在他们争用临界资源时。
为了对多个相关进程在执行次序上进行协调,以使并发执行的诸程序之间能有效地共享资源和相互合作,使程序的执行具有可再现性,所以引入了进程同步的概念。
信号量机制是一种卓有成效的进程同步工具。
在生产者---消费者问题中应注意(信号量名称以多个生产者和多个消费者中的为例):首先,在每个程序中用于互斥的wait(mutex)和signal(mutex)必须成对出现;
其次,对资源信号量empty和full的wait和signal操作,同样需要成对地出现,但它们分别处于不同的程序中。
生产者与消费者进程共享一个大小固定的缓冲区。
其中,一个或多个生产者生产数据,并将生产的数据存入缓冲区,并有一个或多个消费者从缓冲区中取数据。
2、系统设计:系统的设计必须要体现进程之间的同步关系,所以本系统采用2个生产者、2个消费者和20个缓冲区的框架体系设计。
为了更能体现该系统进程之间的同步关系,系统的生产者、消费者的速度应该可控,以更好更明显的表现出结果。
为了使本系统以更加简单、直观的形式把“消费者-生产者”问题表现出来,我选择了使用可视化界面编程。
1
本书介绍了一些在2000年以前的相位解包裹算法。
在多篇现代的相位三维扫描技术论文中提及,可见其在整个相位测量中的地位和经典。
目录:1、相位展开综述2、线积分,误差,以及二维相位展开3、相位数据,质量图,蒙版法,滤波操作4、路径跟踪法5、最小范数法6、比较与结论由于图书年代久远,是20年前的技术了。
本着追本溯源的精神,过去的思想也许会对今天的创造有所贡献,特此分享。
算法的实现代码也附在资源中,也可自行去网站下载。
ftp://ftp.wiley.com/public/sci_tech_med/phase_unwrapping/
2025/9/5 3:06:23 47.66MB phase unwrapping
1
针对近红外InGaAs焦平面(FPA)调制传递函数(MTF)的测量要求,设计了一种全反射式Offner光学系统,由两块共轴的球面反射镜构成,11成像,F数为4。
在焦平面工作波长1.7μm下对光学系统进行优化,设计结果显示,在8mm×30mm的宽视场(FOV)内任一点,空间频率20lp/mm处(对应光敏元尺寸25μm×25μm的焦平面的Nyquist频率),光学系统的MTF在1.7\mm达到0.82,接近衍射限。
Zygo激光干涉仪在0.6328μm波长下的测量结果显示,系统的波前差均方根(RMS)值在0.6328\mm约为1/20λ,20lp/mm处MTF在0.6328\mm达到0.93。
将测量得到的波前差数据代入CODEV中计算,结果表明波长1.7μm下系统在8mm×30mm的视场内任一点,空间频率20lp/mm处的MTF实验值仍高于0.8,满足要求。
2025/8/28 10:37:02 2.85MB 近红外 焦平面调 全反光学 Offner
1
dockerload<包加载镜像直接在Dockerfile里面使用java8构建的镜像arm使用阿里云Alibaba_Dragonwell_Standard_8.20.21_aarch64_linux.tar.gz作为jdk其他开源jdk在处理pdf转图片会有乱码问题
2025/8/25 23:11:30 383.92MB arm java docker
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡