给出了AP聚类算法的实现代码,并给出了一个对二维坐标点进行聚类的实际例子的聚类结果。
2024/9/4 18:41:52 657KB AP 聚类算法 C++
1
大家加入数据就可以了,希望给大家帮助哦,和欢迎大家来指教,大家试一下吧,不可以就自己改改
2024/9/4 15:46:51 42KB 聚类分析法 matlab代码
1
这篇论文主要探讨了中国古代玻璃制品的风化模型,利用随机森林算法进行数据分析和预测。
文章在数学建模的背景下,获得了山西省一等奖,论文的核心技术包括随机森林优化、数据填充、特征选择、降维模型和分类算法的应用。
对于问题一,研究者处理了数据中的缺失值,使用众数来填充颜色数据。
通过交叉表和卡方检验,确定了表面风化与玻璃类型之间有强相关性,与纹饰有弱相关性,与颜色则无明显关联。
通过观察化学成分的分布,如氧化铅和氧化钾含量,发现不同类型的玻璃具有特定的成分特征。
然后,他们构建了随机森林模型,以风化前后的均值偏差率预测化学成分含量,并验证了预测的准确性。
针对问题二,论文建立了基于重采样的随机森林模型来识别高钾玻璃和铅钡玻璃的分类规律。
通过对14个化学成分的分析,确定了二氧化硅、氧化钾、氧化铅和氧化钡作为关键因素。
通过投影寻踪法降低维度至5个重要成分,并利用改进的k-means聚类算法,将样本分为3个亚类,结果与实际相符。
通过调整聚类数优化损失函数,验证了初始设定的合理性。
在问题三中,研究者加入了有无风化的指标,继续使用随机森林模型预测玻璃类型,测试集预测准确率达到100%。
同时,通过支持向量机(SVM)和贝叶斯判别法结合扰动项,验证了有无风化指标对分类结果的影响,结果显示这个指标的作用不大。
此外,通过正态扰动测试随机森林模型的敏感性,证明模型的稳定性。
对于问题四,论文建立逐步回归模型,寻找不同类别化学成分间的线性关联。
通过VIF方差膨胀因子分析,确定了两类玻璃在二氧化硅、氧化钾、氧化铅和氧化钡等成分上的显著差异性,这与之前的问题二分析结果一致。
总结来说,这篇论文在数学建模的框架下,利用随机森林算法解决了古代玻璃制品风化的建模问题,包括了数据预处理、分类模型建立、特征重要性分析、降维聚类和线性关联研究等多个方面。
这些方法不仅在解决本问题上取得了良好效果,也为类似的历史文物研究提供了有价值的分析工具和思路。
2024/9/2 15:54:31 2.45MB 数学建模 随机森林
1
EM算法训练GMM的Matlab实现过程(总结)中的vq_flat代码
2024/9/1 12:16:49 5KB VQ
1
som自组织神经聚类算法matlabsom自组织神经聚类算法matlab
2024/8/31 8:04:27 5KB matlab
1
文档是word2vec算法数学原理详解。
word2vec是google的一个开源工具,能够仅仅根据输入的词的集合计算出词与词直接的距离,既然距离知道了自然也就能聚类了,而且这个工具本身就自带了聚类功能,很是强大。
2024/8/30 14:38:41 13.37MB 机器学习 word2vec 算法原理
1
k均值聚类算法源码(matlab)k均值聚类算法源码(matlab)
2024/8/26 16:37:14 717B k均值聚类算法源码(matlab)
1
这里面是机器学习里面聚类所需的数据集,分为人工的二维数据集,如月牙形,双螺旋型等,和UCI真实数据集,是我搜集好久才弄出来的,有一些二维数据集是自己生成的,提供给大家做算法实验。
2024/8/26 7:51:22 2.44MB 聚类数据集
1
实现基于Kmeans的商品价格聚类
2024/8/24 11:12:33 7KB python
1
用c++写的马尔科夫聚类算法(MCL),输入图的矩阵信息,可以得到图的聚类。
2024/8/10 17:02:12 752KB MCL 马尔科夫聚类 c++
1
共 468 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡