第一阶段:这一阶段会学习MapReduce、Hive、HDFS、Yarn、Spark等计算框架的开发技术,以及Scala编程语言。
通过项目实践,你能快速掌握这些技术,获得数据开发、数据挖掘、机器学习等职位必备的基本开发能力。
第二阶段:这一阶段会学习FLume、Kafka、SparkStreaming、Flink/Storm、Zookeeper、HBase等计算框架的开发技术,以及大数据体系内的数据采集和数据仓库理论思想和技术实现。
通过项目实践,你能快速掌握这些技术,获得完整的大数据架构开发能力。
第三阶段:这一阶段会学习NLP文本相似度、中文分词、HMM算法、推荐算法CF、回归算法等应用与开发技术,整体认识商业项目-音乐推荐系统。
使用海量真实数据对大数据平台和算法进行应用实践,快速掌握大数据行业具有巨大价值的核心技术。
第四阶段:这一阶段会学习分类算法、聚类算法、分类算法-决策树、分类算法-SVM、神经网络+深度学习,深化前3阶段技术能力,初入机器学习领域。
通过对机器学习核心算法的强化练习,你将能完美胜任目前人才最紧缺的数据挖掘开发职位。
2024/10/13 15:34:27 128B 大数据 机器学习 数据挖掘
1
文献题录分析软件SATI3.2软件+手册+参考文献文献题录信息统计分析工具(StatisticalAnalysisToolkitforInformetrics,SATI),旨在通过对期刊全文数据库题录信息的处理,利用一般计量分析、共现分析、聚类分析、多维尺度分析、社会网络分析等数据分析方法,挖掘和呈现出美妙的可视化数据结果。
通过免费、共享软件功能及开源、增进代码实现,旨在为学术研究提供期刊文献数据统计与分析的辅助工具。
1
复杂网络聚类系数的matlab编程代码,将复杂网络存储为矩阵,再对其matLab编程,可得到度分布图
2024/10/9 16:29:50 898B 复杂网络
1
基于密度峰值快速搜索发现聚类中心的聚类算法源代码。
2024/10/8 14:19:30 5KB 密度峰值聚类
1
SLIC:simplelineariterativeclustering的简称,即简单的线性迭代聚类。
这是一个基于聚类算法的超像素分割,由LAB空间以及x、y像素坐标共5维空间来计算。
不仅可以分割彩色图,也可以兼容分割灰度图,它还有一个优点就是可以人为的设置需要分割的超像素的数量。
2024/10/8 8:38:32 24KB slic matlab
1
weka是一款由Waikato大学研究的基于Java的用于数据挖掘和知识发现的开源项目,其中集成了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理、关联规则挖掘、分类、聚类等,并提供了丰富的可视化功能。
同时,由于其是一款开源软件,所以也可以用于数据挖掘的二次开发和算法研究。
文章介绍了利用开源软件WEKA作为数据挖掘工具,通过Apriori算法,对高校图书馆流通历史数据进行挖掘分析。
2024/10/6 14:17:03 166KB 数据挖掘实例 weka 关联规则算法
1
该资源主要参考我的博客:[python]Kmeans文本聚类算法+PAC降维+Matplotlib显示聚类图像http://blog.csdn.net/eastmount/article/details/50545937包括输入文档txt,共1000行数据,每行都是分词完的文本。
本文主要讲述以下几点:1.通过scikit-learn计算文本内容的tfidf并构造N*M矩阵(N个文档M个特征词);
2.调用scikit-learn中的K-means进行文本聚类;
3.使用PAC进行降维处理,每行文本表示成两维数据;
4.最后调用Matplotlib显示聚类效果图。
免费资源,希望对你有所帮助~ByEastmount
2024/10/5 19:41:34 247KB python 文本聚类 Kmeans 降维
1
聚类算法GN的MATLAB实现一个小应用,希望有所帮助
2024/10/3 18:50:51 203KB GN;聚类
1
该文档主要讲解马尔可夫聚类算法(TheMarkovClusterAlgorithm,MCL),配有计算公式,转化方法,结合实例讲解算法过程,个人感觉思路很清晰,讲解的很详细。
2024/10/2 21:02:39 726KB The Markov Cluster Algorithm
1
有序序列聚类分析算法可以实现节点(分为k类)的的分析
2024/10/1 0:13:46 1024B 有序序列的聚类算法
1
共 486 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡