以石英和不同型号的玻片为基底,系统研究了基底折射率对周期性金银复合纳米阵列的制备及其光学性能的影响。
采用离散偶极子近似(DDA)数值方法研究了复合阵列的局部表面等离子共振(LSPR)光谱特性,计算结果表明,当基底折射率为1.43和1.68时,纳米阵列的折射率灵敏度(RIS)和品质因子(FOM)比较优异。
利用纳米球刻蚀法(NSL)制备了二维周期性复合纳米点阵结构,实验结果表明,当基底折射率为1.43和1.68时,基底与贵金属纳米颗粒有较好的粘合度,纳米阵列结构形貌比较规则清晰。
1
微电子器件与集成电路(IC)设计基础是一门深入探讨微电子技术核心原理的学科,它涵盖了从基本的半导体物理到复杂集成电路设计的广泛知识。
以下是对这套PPT内容的详细解读:1.**第1章:电子设备的物理基础**-半导体材料:本章将介绍半导体的基本性质,如硅(Si)和锗(Ge)等元素半导体,以及杂质掺杂的概念,如何通过掺杂N型和P型半导体来控制电子和空穴的浓度。
-电荷载体:讨论电子和空穴作为半导体中的电流载体,以及它们在电场下的移动方式。
-PN结:解释PN结的形成,它的能带结构,以及PN结的正向和反向偏置特性,包括击穿电压。
-单极晶体管:介绍BJT(双极型晶体管)和MOSFET(金属-氧化物-半导体场效应晶体管)的工作原理,包括放大作用和开关特性。
2.**第2章:半导体器件**-MOSFET的详细分析:深入讲解MOSFET的结构,包括N沟道和P沟道类型,以及它们的阈值电压、亚阈值区行为和饱和区特性。
-BJTs的运作:解释集电极、基极和发射极之间的电流关系,以及共射、共基和共集配置的放大系数。
-模拟和数字器件:区分模拟和数字半导体器件,例如运算放大器、逻辑门电路和MOS集成电路。
3.**第3章:集成电路设计基础**-集成电路制造工艺:涵盖光刻、扩散、离子注入等半导体制造步骤,以及VLSI(超大规模集成电路)制造的挑战和解决方案。
-CMOS技术:介绍互补金属氧化物半导体(CMOS)技术,它是现代数字电路的基础,包括NMOS和PMOS晶体管的互补工作原理。
-IC设计流程:概述从系统级设计到门级描述,再到布局布线的完整集成电路设计流程,包括硬件描述语言(如Verilog或VHDL)和逻辑综合。
-片上系统(SoC):讨论集成微处理器、存储器和其他功能模块的单片系统设计,及其在嵌入式系统中的应用。
这三章内容构成了微电子器件与IC设计基础的核心,涵盖了从基本理论到实际应用的关键知识点。
学习这些内容对于理解微电子技术的原理,以及进一步从事集成电路设计和半导体产业的工作至关重要。
通过这套PPT,学生和从业者可以深入理解半导体物理学、器件原理和集成电路设计的方方面面。
2025/4/15 20:51:25 6.53MB 微电子器件与IC设计基础_全套PPT
1
1)采样电阻由电阻R₁、R₂和R₃组成。
当输出电压发生变化是,采样电阻对变化量进行采样,并传送到放大电路的反相输入端。
2)放大电路放大电路A的作用是将采样电阻送来的变化量进行放大,然后传送到调整管的基极。
3)基准电压基准电压由稳压管VDz提供,接在放大电路的同相输入端。
采样电阻与基准电压进行比较,得到的差值再由放大电路进行放大。
4)调整管调整管VT接在输入直流电压Ui与输出端的负载电阻RL之间,当输出电压Uₒ发生波动时,调整管的集电极电压产生相应的变化,是输出电压基本保持稳定。
1
注意:实验报告不全,参考价值:函数实现。
1.1用C++实现复数类,并为其定义必要的运算符。
structComplex{doublereal_;doubleimage_;Complex(void);Complex(doubleconst&real);Complex(doubleconst&real,doubleconst&imag);Complex(Complexconst&v);Complexoperator+(Complexconst&a)const;Complexoperator-(Complexconst&a)const;Complexoperator*(Complexconst&a)const;Complexoperator/(intn)const;……};1.2voidfft(Comples*dst,Complex*src,intp);快速傅里叶变换。
求复数数组src[0,2p)的傅里叶变换,结果存放在dst[0,2p)中。
1.3voidifft(Complex*dst,Complex*src,intp);快速傅里叶逆变换。
求复数数组src[0,2p)的逆傅里叶变换,结果存放在dst[0,2p)中。
1.4利用快速傅里叶变换计算长整数乘法。
typedefstd::vectorInteger;voidmultiply(Integer*rst,Integerconst&a,Integerconst&b);假设向量a[0,n)表示一个长整数:其中2≤β≤256为基底,函数将两个长整数a,b相乘,结果放在*rst向量中。
利用上面的长整数乘法程序计算结果 (123456789ABCDEF)16256^500×(FEDCBA987654321)16256^500 (987654321)1010^800×(123456789)1010^800
2025/4/6 5:17:12 22KB 北邮 数值 符号计算
1
VASP是ViennaAb-initioSimulationPackage的缩写,它是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包,它基于CASTEP1989版开发
2025/4/3 0:52:38 1.27MB 材料计算
1
基恩士PLC程序(包括RS485通信):控制六轴程序+HMI松下屏+电气图
2025/3/31 16:08:25 1.83MB 基恩士PLC
1
【新能源微电网】新能源微电网是由分布式电源、储能设备、能量转换装置等组成的微型发配电系统,能够在独立或并网状态下运行,具有自我控制、保护和管理能力。
它结合了新能源发电,如太阳能和风能,以提高能源利用率,尤其在偏远地区提供电力供应。
然而,新能源的不稳定性给微电网的运行带来了挑战,如发电量预测和电网管理的困难。
【人工智能神经网络】人工神经网络是人工智能的核心组成部分,模拟生物神经网络结构,用于解决复杂问题,如信息处理和学习。
在新能源微电网领域,神经网络主要用于处理非线性和复杂的预测任务,如风力发电量和电力负荷的预测。
主要的神经网络分词法有:神经网络专家系统分词法和神经网络分词法,前者结合了神经网络的自学特性与专家系统的知识,后者通过神经网络的内在权重来实现正确分词。
【RBF神经网络】径向基函数(RBF)神经网络是神经网络的一种,常用于预测任务。
它由输入层、隐藏层和输出层组成,其中隐藏层使用RBF作为激活函数,实现输入数据的非线性变换,从而适应复杂的数据模式。
在微电网中,RBF神经网络用于短期负荷预测,能有效处理非线性关系,降低外部因素对预测的干扰。
【微电网短期负荷预测】短期负荷预测对于微电网的能量管理和运行优化至关重要。
通过构建RBF神经网络模型,可以预测未来一定时间内的负荷变化。
预测模型的建立通常需要选择与负荷密切相关的输入数据,如时间、气温、风速等,并进行数据预处理。
MATLAB等工具可用于进行网络训练和仿真,以生成预测结果。
【风力发电预测】RBF神经网络同样适用于风力发电量的预测。
通过对风速、气压等相关因素的预测,可以估算微电网系统的风力发电潜力,帮助维持系统的稳定运行,减少风电波动对微电网的影响。
总结来说,人工智能神经网络,尤其是RBF神经网络,为解决新能源微电网中的挑战提供了有效工具。
通过精确预测新能源发电量和电力负荷,可以优化微电网的运行效率,确保其稳定性和自给自足的能力。
此外,这种技术还能促进可再生能源的有效利用,有助于推动能源行业的可持续发展。
1
中文|BasePopup-Android下打造通用便捷的PopupWindow发布糖果执照阿皮作者有奖调查问卷:导航特性本库作为基类,对您的实现没有任何干预,再也不需要担心实现某些方法的时候被Api限制了无需头疼如何计算偏移来进行位置控制,只需要简简单单的设置便能随心所欲的控制您的弹出无论是还是,只需要跟您平时一样写动画,就可以完成Popup的动效设计了,不需要xml不需要关心别的兼容性问题背景与主体分离,是,还是或者,甚至,都可以通过简单的设置完成,主体与背景隔离,不用担心事件的问题还在为Popup的触摸事件头疼吗?BasePopup帮你解决烦恼〜返回键控制,外部点击透传,单击外部是否消失都只需要您动动手指头完成配置即可PopupWindow自动锚定AnchorView,滑动到屏幕外自动跟随AnchorView消失,不需要复杂的逻辑设置,只需要通过方法告诉BasePopup即可帮您完成简单的PopupWindow不想新建一个类,希望拥有链式调用?没问题,生成而生,相信你会越用越爱〜注意事项请仔细阅读本自述文件,每个版本升级请重新引用更新日志,
2025/3/28 12:43:47 1.36MB android popup-window popup-menu popup
1
CISSP官方學習指南英文第七版,基於第七版ExamOutline
2025/3/25 9:04:36 7.79MB CISSP,OSG
1
共 471 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡