利用50层ResNet实现手势数字的识别,准确率可达95%。

2024/7/28 10:48:10 10.49MB 手势数字 残差网络
1
为了提高语音信号端点检测的准确率,提出了一种基于双门限-频带方差的检测方法。
该方法将语音信号短时能量、短时过零率和频带方差结合起来,作为检测语音信号起始位置和终止位置的参数。
仿真实验表明,该方法比传统方法更有效、更优越,能够比较准确地检测语音信号。
1
android端,基于openCV与深度学习,实现快速准确的车牌识别。
平均识别耗时350ms左右,采集100样本识别准确率达到95%。
识别过程:1、使用openCV确定车牌左右、上下区域;
2、车牌倾斜判断与校正;
3、滑动切割字符;
4、深度学习对每个字符进行识别
2024/7/21 21:39:02 24.82MB 车牌识别
1
光伏阵列能否正常工作直接关系到整个光伏发电系统运行的安全性和可靠性。
对于光伏阵列故障诊断中传统的BP神经网络诊断算法准确率低、收敛速度慢等问题,提出一种基于粒子群优化RBF神经网络的故障诊断算法。
建立以光伏阵列的4种故障特征参数为输入、5种情况为输出的故障诊断模型,对基于粒子群算法的网络模型的自适应权重寻优进行仿真实验。
最后,将优化算法与BP神经网络算法以及RBF神经网络算法进行对比。
实验结果表明,优化算法不仅可以有效地诊断光伏阵列的故障类型,而且还可以提高故障诊断的准确率。
2024/7/16 10:56:42 958KB 行业研究
1
扑克牌数字花色识别,基于Matlab。
可实现对数字以及花色的识别,运行速度快,准确率高。
2024/7/5 9:33:27 5.57MB 扑克牌识别
1
将实例的特征向量(以二维为例)映射为空间中的一些点,就是如下图的实心点和空心点,它们属于不同的两类。
那么SVM的目的就是想要画出一条线,以“最好地”区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。
1
利用lm()+boruta算法预测NBA常规赛前16强,准确率达到14/16。
包括模型的建立以及算法的评估。
2024/6/7 10:39:23 297KB 数据分析 R语言
1
本次实验训练了多个用于垃圾图片分类识别的模型,采用迁移学习的方法选取性能较好的模型进行调优改进,最终的模型识别准确率在93%以上(30个epoch);
然后将训练好的模型部署在华为云上,生成API接口进行调用;
最后设计了一个可视化程序调用API接口来进行展示,方便用户使用。
2024/5/26 13:35:28 711KB 垃圾分类 深度学习 Pytorch
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
matlab实现的计算但标签分类聚类准确率的计算代码。
函数包含两个参数groundtruth以及分类/聚类模型给出的预测标签向量
2024/4/26 2:26:01 643B matlab
1
共 127 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡