相关向量机的MATLAB代码,经过验证是正确的,很实用推荐相关向量机(Relevancevectormachine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(Supportvectormachine,简称SVM)一样的函数方式,与SVM一样基于核函数映射将低维空间非线性问题转化为高维空间的线性问题。
RVM原理步骤RVM通过最大化后验概率(MAP)求解相关向量的权重。
对于给定的训练样本集{tn,xn},类似于SVM,RVM的模型输出定义为y(x;w)=∑Ni=1wiK(X,Xi)+w0其中wi为权重,K(X,Xi)为核函。
因此对于,tn=y(xn,w)+εn,假设噪声εn服从均值为0,方差为σ2的高斯分布,则p(tn|ω,σ2)=N(y(xi,ωi),σ2),设tn独立同分布,则整个训练样本的似然函数可以表示出来。
对w与σ2的求解如果直接使用最大似然法,结果通常使w中的元素大部分都不是0,从而导致过学习。
在RVM中我们想要避免这个现像,因此我们为w加上先决条件:它们的机率分布是落在0周围的正态分布:p(wi|αi)=N(wi|0,α?1i),于是对w的求解转化为对α的求解,当α趋于无穷大的时候,w趋于0.RVM的步骤可以归结为下面几步:1.选择适当的核函数,将特征向量映射到高维空间。
虽然理论上讲RVM可以使用任意的核函数,但是在很多应用问题中,大部分人还是选择了常用的几种核函数,RBF核函数,Laplace核函数,多项式核函数等。
尤其以高斯核函数应用最为广泛。
可能于高斯和核函数的非线性有关。
选择高斯核函数最重要的是带宽参数的选择,带宽过小,则导致过学习,带宽过大,又导致过平滑,都会引起分类或回归能力的下降2.初始化α,σ2。
在RVM中α,σ2是通过迭代求解的,所以需要初始化。
初始化对结果影响不大。
3.迭代求解最优的权重分布。
4.预测新数据。
2021/2/5 11:51:53 17KB 相关向量机 rvm
1
IP核概述.docSOPC中自定义外设和自定义指令功能分析.pdf基于Avalon总线TLC5628自定义IP核的开发.pdf基于Avalon总线的TFTLCD控制器的设计.doc基于Avalon总线的可配置LCD控制器IP核的设计.doc基于Avalon总线的可配置LCD控制器IP核的设计.pdf基于Avalon总线的直流电机PWM控制.pdf基于Avalon总线的键盘和VGA控制接口设计.pdf基于NIOSII嵌入式处理器实现LCD的控制.doc基于NiosII的I2C总线接口的实现.doc基于NIOS_嵌入式软核处理器的LCD控制方法研究.pdf基于Nios_的DDRSDRAM控制器的相关技术研究与实现.pdf基于Nios_的LED显示屏控制系统.pdf基于Nios_的USB接口模块设计.pdf基于Nios_自定制Avalon设备的设计与实现.pdf基于NIOS的I_2C总线接口芯片AT24C16读写的实现.pdf基于系统级FPGA_CPLD的SoPC嵌入式开发研究.pdf如何应用Nios嵌入式处理器和C2H进行IP摄像头的设计——徐光辉.pdf定制SOPC用户部件(component)的方法和例子//DevelopingSOPCBuilderComponents.pdfpwm_source.zip
2019/2/11 7:36:33 6.2MB Altera SOPC IP核
1
在中国安防产业中视频监控作为最重要的信息获取手段之一,能对目标有效的提取是重要而基础的问题,因此本文在此背景下,围绕对监控视频的前景目标有效的提取问题,研究了关于1)静态背景、动态背景的前景目标提取,能在背景复杂化的条件下,将运动的目标;
2)带抖动视频;
3)静态背景下多摄像头对多目标提取;
4)出现异常事件视频的判断等问题。
给出了在不同情况下的前景目标提取方案。
问题一是针对静态背景且摄像头稳定的情况下,如何对前景目标提取的问题。
在题目要求的基础上,通过对附件2中几组视频的分析,我们发现所有前景目标的运动短暂且光线明暗变化不明显。
由于传统的Vibe算法能抑制鬼影但是运行效果不理想,因此采用建立在帧差法上改进的Vibe算法模型求解问题。
并和传统的Vibe算法做对比,结果显示改进的Vibe算法明显优于传统的算法。
而且对我们的算法模型做了效果评价。
详细数据参考正文与附录。
问题二是在背景为动态(如有水波的产生)的情况下,对前景目标的提取问题。
在此问题中,由于动态背景存在使得提取出的图像帧具有大量的干扰噪声,对前景目标的识别和提取造成干扰,因此我们提出一种基于全局外观一致型的运动目标检测法。
在用Vibe算法对场景预检测的基础上,建立混合高斯模型分别对前景和背景进行全局外观建模,将运动目标检测出来,再引入超像素去噪,进一步优化结果。
详细结果参考正文与附录。
问题三是在问题一、二基础上的进一步深化。
问题一及问题二是建立在摄像机自身稳定的基础上,而问题三则是在摄像机抖动的情况下。
由于摄像机抖动一般具有旋转和平移,因此我们建立了坐标变换模型,以仿射变换作为模型基础,结合改进的高精度鲁棒的RANSAC算法提取前景目标,并对比灰度投影法,比较两种模型效果。
具体效果见正文与附录。
问题四是对前三个问题的综合应用。
运用基于混合高斯模型背景建模Vibe算法,对前景目标进行提取;
选出具有显著前景目标的参考帧,计算参考帧中显著前景目标所占的面积,并将此面积设定为阈值T,遍历所有的视频帧,计算其前景目标所占的面积,通过相减对比,判定显著前景目标。
若判定为显著前景目标则输出其所在视频帧中的帧号,并将显著前景出现的总帧数增加1。
问题五是针对多摄像头多目标的协同跟踪问题。
在问题二的混合高斯模型基础上我们建立了动态背景提取法,对不断变化的背景进行实时更新。
再利用单应性约束法对多目标发生重叠现象进行投影将重叠目标区分开来,对目标进行定位。
由于目标的不断运动,我们采用粒子滤波法对前景目标进行实时跟踪,通过多摄像头的协同通信完成对多前景目标的检测。
问题六是针对监控视频中前景目标出现异常情况时判断能否有异常事件的问题。
在基于稀疏表示的模型上,引入混合高斯模型用于学习不同类型的运动特征规律,然后通过各个单高斯模型中的均值建立一个相似矩阵作为字典。
以测试阶段生成的核矢量为基础,用该局部特征的核矢量计算基于稀疏表示的重构误差,并将其与已设定的阈值进行比较,如果重构误差大于阈值,则判为异常。
2015/11/11 19:17:23 2.62MB MATLAB 目标提取 视频监控 Vibe算法
1
《HELLOFPGA》-学习指点篇.pdf《HELLOFPGA》-数字电路篇.pdf《HELLOFPGA》-硬件语法篇.pdf《HELLOFPGA》-项目实战篇.pdf《HELLOFPGA》-软件工具篇.pdf《HELLOFPGA》-软核演练篇.pdf
2018/9/20 1:06:09 39.08MB fpga hello fpga
1
Triple-SpeedEthernet(tse)FPGA软核MAC民间实例http://blog.csdn.net/xgbing/article/details/8557144
2020/3/9 14:01:02 5.87MB fpga tse Triple mac
1
采用MATLAB实现支持向量机(SVM)处理二分类问题,分别采用二次规划凸优化求解、半不无穷规划(线性核与非线性核)求解。
带IRIS数据、实验报告与SVM二分类原理数学推导文档,可直接运行,不使用MATLAB的SVM工具箱,比较基础。
2019/7/10 18:34:24 5.11MB SVM 支持向量机 MATLAB 二分类
1
核主成分分析法matlab源代码,极度好的一个例子
2015/3/20 12:26:19 6KB 主成分分析法matlab源代码
1
支持向量数据描述(SupportVectorDataDescription,SVDD)语言:MATLAB版本:V2.1-----------------------------------------------------创作不易,欢迎各位5星好评~~~如有疑问或建议,请发邮件至:iqiukp@outlook.com可提供关于该算法/代码的付费咨询和有偿编写-----------------------------------------------------主要特点1.支持单值分类和二值分类的超球体构建2.支持多种核函数(linear,gaussian,polynomial,sigmoid,laplacian)3.支持2D或3D数据的决策边界可视化4.支持基于贝叶斯超参数优化、遗传算法和粒子群算法的SVDD的参数优化5.支持加权的SVDD-----------------------------------------------------注意1.SVDDV2.1仅支持R2016b以上的MATLAB版本2.正样本和负样本对应的标签分别为1和-13.提供了多个示例文件,每个文件的开头都有对应的引见4.此代码仅供参考5.可以阅读“SVDD-V2.1使用说明.pdf”文件了解更多用法
1
Xilinx是全球领先的可编程逻辑完整解决方案的供应商,研发、制造并销售应用范围广泛的高级集成电路、软件设计工具以及定义系统级功能的IP(IntellectualProperty)核,长期以来不断推动着FPGA技术的发展。
ISE使用指南(完整版)包含ISE的安装,使用。
2017/3/22 23:57:55 5.02MB ISE教程
1
本文首先对目前典型的流形学习方法与核函数理论进行较为全面的分析,并对LE(LaplaceEigenmaPs)算法进行核化。
此外,提出了一种PCA(PrinciPalComponentAnalysiS)和LLE(LoealLinearlyEmbedding)混合数据降维方法,并在经典数据集和具有挑战性的数据集上取得了较好的降维效果。
为了进一步说明此算法的无效性,本文将此算法应用于手写字分类和人脸分类算法的预处理过程中,得到了预期的效果。
为了说明此算法的无效性,本文又进一步从理论上进行了分析。
2020/1/13 5:24:50 3.46MB 流形学习 数据降维
1
共 406 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡