基于bp神经网络的矿石加工质量控制问题摘要 本文主要研究温度等因素对矿石加工质量控制问题。
提高矿石加工质量,对节约不可再生资源和能源,推动节能减排,助力“双碳”’目标的实现,具有重要的意义。
针对问题一,我们要实现在给定系统温度和原矿参数的情况下,预测可能性最大的产品的指标。
由于在刚开始调温时,系统还未稳定,所以指标参数会有大幅度变化。
因而我们要首先对附件一中的数据进行预处理,去除其中的不正常数据。
同时,将系统一和系统二的温度,四个原矿参数作为输入,四个产品指标作为输出,利用bp神经网络训练它,用训练好的神经网络,来预测题目已知温度和原矿参数条件下的产品指标。
最终得到结果为:80.9556、22.1783、10.6264、21.6435和78.3544、26.4780、13.5826、28.2638。
针对问题二,问题二与问题一的问法正好相反,要我们通过其他数据来预测系统一和系统二温度。
也可以使用bp神经网络来求解。
不同的是,问题二的模型应改为八输入二输出。
最终得到的结果为:1757.2,389和1854.5,405.6。
针对问题三,同样可以采用BP神经网络预测模型来预测产
2020/6/17 18:04:34
2.6MB
数学建模
1