简单地引见了OFDM-UWB系统,在此基础上用matlab建立了简化的OFDM-UWB基带传输模型。
然后分析了同步对系统的影响,可知同步模块是必要的,于是分析了现有的几种同步算法。
结合OFDM-UWB系统的特点,选择了基于同步序列的同步算法,它能同时实现载波和帧同步。
然后设计了一种基于S&C算法的联合同步算法,最后用matlab实现了该算法,它能有效地降低BER,并验证了它的有效性。
2023/3/14 16:57:20 831KB OFDM 同步
1
针对传统光线投射算法在三维场景中绘制大量烟雾数据时存在计算资源消耗大、绘制速度缓慢等一系列问题,提出一种基于改进光线投射算法的室内烟雾可视化方法。
将三维数据场按照统一大小划分成均匀的数据块,求出光线穿越数据块时入射点和出射点的中点位置,利用视点和中点之间的距离比例来调整采样频率,从而获得重采样点的位置。
再通过对光线上的重采样点进行分级分组操作,对处于不同级别的采样点采取不同的插值策略,最初使用图像合成算法完成光线上重采样点数据值的映射,得到室内烟雾的渲染效果。
实验结果表明,该方法是可行且有效的,与现有的光线投射算法相比,在保证绘制图像真实性和稳定性的前提下,改进过后的光线投射算法极大地减少了渲染过程中重采样和线性插值时的计算量,同时帧率能够稳定保持在75frame·s-1左右,可满足不同室内场景下烟雾的实时绘制要求。
1
该文件为本人亲身录制,格式为H264裸流,帧率为15帧。
方便大家测试调试,希望能最大化的帮助大家,有对于视频解码不懂的朋友,欢迎留言。
2023/3/10 23:56:32 1.96MB h264文件 15帧率
1
本人写的MFC视频播放器,基于DirectShow技术,VS2013写的,需要配置DirectShow的环境才可运行,压缩包中有DirectShow的配置方法和配置文档,本播放器实现了播放,暂停,停止,帧播放,加速播放(最多20倍,可在源码内更改),减速播放,截图和播放列表功能。
有简单注释,是您学习MFC和DirectShow播放的好例子
2023/3/8 18:28:20 5.38MB DirectShow 播放器 MFC C++
1
界面做了优化,采用多线程技术,做了显示帧率的显示与采集帧率的显示,内有帧率计算方法,工夫计算方法,并行,多线程,绘图方法,托管与非托管内存转换技术等
2023/3/6 14:01:07 11.28MB C# 大恒 相机开发 多线程
1
它是一款极度出色的含视频编辑器的视频分割器,基于高效视频编辑SDK,并引入了MPEG-2帧精确编辑,可适用于处理MPEG-2、AVI、WMV、ASF、MP3、WMA文件等主流音视频文件的分割。
1
本书共7章,分别引见了LTE产生的背景,对LTE的网络架构和协议栈作了简要的说明;
无线通信技术以及数字信号处理过程,结合实例言简意赅地说明实现原理和方法;
LTE物理层技术,重点对物理帧结构、物理资源划分以及物理信道的调制实现进行了说明;
LTE物理层复用技术及物理层过程;
LTE的空中接口技术及实现流程,MAC子层、RLC子层、PDCP子层以及RRC层的功能和实现机制,RRC层实现的具体流程;
多天线技术的原理及应用;
LTE的下一步演进LTE-A的发展趋势及关键技术。
2023/2/21 1:11:27 20.18MB 3GPP LTE 物理层 空口接口
1
1)、用两个线程a和b来模仿Ethernet上的两台主机。
2)、用一个双字类型变量Bus来模仿总线(将其初始化为”\0”,并且总线等于”\0”时表示总线空闲)。
3)、两个子线程向总线发送自己的数据。
数据用该线程的线程号进行模仿,发送数据用线程号和Bus的“或”操作进行模仿(即Bus=Bus|ID,ID为该线程的线程号)。
4)、每台主机必须将总线上发送成功10次数据,如果其中某次数据发送失败,则该线程结束。
5)、发送流程必须遵循CSMA/CD。
随机延迟算法中的冲突窗口取0.005。
在数据发送成功(
2023/2/21 0:34:35 3KB 网络技术 帧发送
1
经过开源vlc接口读取视频并将视频的数据帧解析出来,经过opengl接口实现播放
2023/2/18 19:33:07 2KB vlc opengl
1
基于OPENCV的运动估计-块婚配,根据锚定帧输出预测帧、预测误差及PSNR,本文采用了穷尽搜索算法MBA及三步搜索法EMBA
2023/2/17 1:08:52 14.22MB OPENCV 运动估计 块匹配
1
共 543 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡