上传者: weixin_38625708
|
上传时间:2023/4/18 0:39:57
|
文件大小:1.18MB
|
文件类型:PDF
基于转移学习以及明显性检测的场景特定行人检测,用于视频监控
行人检测是视频监控中的一个底子下场,连年来已经患上到了长足的普及。
然则,由于源熬炼样本以及目的场景中行人样本之间的差距,在某些人民数据集上熬炼的通用行人检测器的成果在使用于某些特定场景时会明晰飞腾。
另外,在目的场景中手动标志样本也是一项高尚且费时的责任。
咱们提出了一种别致的转移学习框架,该框架能够自动将通用检测器转移到特定于场景的行人检测器,而无需手动标志目的场景中的熬炼样本。
在咱们的方式中,咱们经由对于目的场景使用通用检测器来患上到初始检测下场,咱们将该下场称为目的样本。
咱们使用了多少种线索来过滤目的模板,从末了的检测下场中咱们能够未必它们的标签。
高斯稠浊模子(GMM)用于患上到每一个视频帧中的行为地域以及一些其余目的样本,这些目的样本没法被通用检测器检测到,由于这些目的样本距离摄像机较远。
目的样本以及目的模板之间的相关性以及源样本以及目的模板之间的相关性经由怪异编码举行估算,而后用于盘算源样本以及目的样本的权重。
明显性检测是在源样本以及目的模板之间举行相关性盘算以消除了非明显地域干扰以前的一项必不可少的责任。
齐全这些思考都是在单个目的函数下拟定的,经由对于齐全这些样本削减基于怪异编码的权重来
本软件ID:15480501