BrettSlatkin是Google的一名高级软件工程师,九年前他开始尝试使用Python来管理Google庞大的服务器群,他的建议:成为一个好的Python程序员之前毋须完全读完本书。
•课程1:使用表达式和语句:在课程1中,你会学习到如何以Python行者的风格撰写程序,所使用的方法会影响到你将来编写的每一段程序。
•课程2:使用解析器和生成器:在课程2中,你会学习如何使用解析器和生成器来处理和创建序列。
•课程3:使用函数:课程3涵盖了Python函数的撰写和调用的多种独特的功能。
•课程4:使用类:课程4聚焦于如何正确的使用Python的面向对象编程,同时避免一些常见的陷阱。
•课程5:并发和并行:课程5为你提供了Python内置函数的洞见,即编写的程序能够同时干很多事情。
•课程6:让程序更加的完善:在课程的最后一节,你可以学习到最佳的技术,从而让你的程序在生产环境运行时做到无懈可击。
2024/5/21 20:25:02 9.06MB Python Brett Slatkin
1
以实例演示的方式介绍了很多与ASP.NETWebAPI相关的最佳实践,同时还提供了一系列实用性的扩展。
《ASP.NETWebAPI2框架揭秘》详细讲解了ASP.NETWebAPI从接收请求到响应回复的整个流程,包括路由、HttpController的激活、Action方法的选择与执行、参数的绑定与验证、过滤器的执行和安全等相关的机制。
2024/5/21 14:23:48 47.57MB ASP.NET 开发
1
通过改变气压、脉冲重复频率以及注入电功率等参量,探讨了Cu-Ne-HBr激光器的工作特性,测量了一些参量之间的关系,并对此进行了讨论。
分析了HBr气体在Cu-Ne-HBr激光器中的作用。
实验得出在充电电压较低(<2kV)的条件下,器件工作的最佳参量为:混合气压比约15:1(Ne:HBr),最佳脉冲重复频率20kHz,最佳混合气压2.66kPa左右。
2024/5/18 0:37:55 1.4MB Cu-Ne-HBr 工作参量 运转特性
1
为了减小运动估计算法的计算复杂度,提出了一种有效的三步搜索算法。
该算法采用多步搜索策略,根据运动矢量分布的中心偏移性及并行处理的思想,在最佳匹配点所在的区域使用菱形小模板代替原有的正方形小模板来进行精细搜索,以提高算法的搜索精度。
2024/5/17 2:41:08 92KB 运动矢量;块匹配;
1
halcon定位教程,入门提高最佳文档
2024/5/17 2:49:29 15.88MB halcon c#
1
【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
最全面的Peersim仿真资料,绝对物有所值,是初学者掌握P2P仿真的最佳资料
2024/5/15 8:12:42 4.14MB P2P Peersim 模拟 仿真
1
本文基于支持向量机(SVM)和改进的粒子群优化(IPSO)算法(SVM-IPSO)创建了双向预测模型,以预测碳纤维的性能和生产参数。
在SVM中,选择对预测性能有重要影响的参数至关重要。
提出了IPSO对它们进行优化的方法,然后将SVM-IPSO模型应用于碳纤维产量的双向预测。
SVM的预测精度主要取决于其参数,因此利用IPSO来寻找SVM的最佳参数,以提高其预测能力。
受小区通信机制的启发,我们通过将全球最佳解决方案的信息纳入搜索策略来提出IPSO,以提高开发效率,并采用IPSO建立双向预测模型:在前向预测的方向上,我们认为富有成效参数作为输入,属性索引作为输出;
在向后预测的方向上,我们将性能指标视为输入,将生产参数视为输出,在这种情况下,该模型成为新型碳纤维的方案设计。
来自一组实验数据的结果表明,该模型的性能优于径向基函数神经网络(RNN),基本粒子群优化(PSO)方法以及遗传算法和改进的粒子群优化(GA-IPSO)方法在大多数实验中都是如此。
换句话说,仿真结果证明了SVM-IPSO模型在处理预测问题方面的有效性和优势。
2024/5/15 2:02:19 536KB support vector machine; particle
1
Diskeeper12汉化破解版Diskeeper有史以来的第一次也是任何软件程序的计算历史的第一次具备新的InvisiTasking技术的Diskeeper完全自动操作,不乾扰任何系统资源。
文件系统性能几乎立即开始增强,而且无需计划。
Diskeeper2008设计为在需要时实时工作。
由于它透明运行,不乾扰系统资源,所以无需由IT人员进行计划。
碎片整理几乎立即开始。
如同日落日出那样自动化,Diskeeper始终保持系统以最佳速度和可靠性运行。
2024/5/10 18:36:10 37.15MB diskeeper 破解 汉化
1
上述代码是利用python内置的k-means聚类算法对鸢尾花数据的聚类效果展示,注意在运行该代码时需要采用pip或者其他方式为自己的python安装sklearn以及iris扩展包,其中X=iris.data[:]表示我们采用了鸢尾花数据的四个特征进行聚类,如果仅仅采用后两个(效果最佳)则应该修改代码为X=iris.data[2:]
2024/5/9 17:25:35 727B python
1
共 930 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡