上传者: weixin_38581447
|
上传时间:2024/5/15 2:02:19
|
文件大小:536KB
|
文件类型:PDF
改进的粒子群算法与支持向量机相结合的碳纤维产量双向预测
本文基于支持向量机(SVM)和改进的粒子群优化(IPSO)算法(SVM-IPSO)创建了双向预测模型,以预测碳纤维的性能和生产参数。
在SVM中,选择对预测性能有重要影响的参数至关重要。
提出了IPSO对它们进行优化的方法,然后将SVM-IPSO模型应用于碳纤维产量的双向预测。
SVM的预测精度主要取决于其参数,因此利用IPSO来寻找SVM的最佳参数,以提高其预测能力。
受小区通信机制的启发,我们通过将全球最佳解决方案的信息纳入搜索策略来提出IPSO,以提高开发效率,并采用IPSO建立双向预测模型:在前向预测的方向上,我们认为富有成效参数作为输入,属性索引作为输出;
在向后预测的方向上,我们将性能指标视为输入,将生产参数视为输出,在这种情况下,该模型成为新型碳纤维的方案设计。
来自一组实验数据的结果表明,该模型的性能优于径向基函数神经网络(RNN),基本粒子群优化(PSO)方法以及遗传算法和改进的粒子群优化(GA-IPSO)方法在大多数实验中都是如此。
换句话说,仿真结果证明了SVM-IPSO模型在处理预测问题方面的有效性和优势。
本软件ID:15451008