针对脉冲位置调制(PPM)和数字脉冲间隔调制(DPIM)等方法存在的问题,提出了一种新的双宽脉冲位置调制(DD-PPM)方式。
在给出其符号结构的基础上,分析了带宽需求、传输容量和平均功率,推导出弱湍流信道下的误包率模型,并将其与开关键控调制(OOK),PPM和DPIM等典型调制方式进行了比较。
理论分析和仿真结果表明,DD-PPM不仅比OOK具有更高的功率利用率和更好的差错功能,比PPM具有更高的带宽效率和传输容量,比DPIM具有相近甚至略好的差错功能,而且因符号长度固定,解调时不存在等待或缓存器溢出等问题,较DPIM更易工程实现。
因而作为一种折中的调制方式,DD-PPM在无线光通信中有一定的应用场合。
1
基于fpga的ppm位同步verilog代码采用锁相环同步分为4部分,明晰明了,高频时钟为8倍频
2020/6/10 12:04:19 3KB fpga ppm 位同步 verilog
1
实现图像格式的转化,将bmp的彩色图像转化为其他简单格式,便于运用。
2018/1/11 17:08:29 18.4MB bmp ppm pgm
1
Photopea是用于编辑栅格的免费在线工具:artist_palette:以及支持PSD,XCF和Sketch文件的矢量图形。
由于Photopea并非完全开源,因而该帐户可作为错误报告和一般讨论的地方。
支持的格式:复杂:PSD,AI,XCF,草图,XD,图,PXD,CDR,SVG,EPS,PDF,PDN,WMF,EMF。
栅格:PNG(APNG),JPG,GIF,WebP,ICO,BMP,PPM/PGM/PBM,TIFF,DDS,IFF,TGA。
原始:DNG,NEF,CR2,ARW,GPR,3FR,FFF。
:envelope::thumbs_up::bird::orange_book::party_popper::light_bulb:,,,
2018/7/24 2:27:42 34KB
1
图像处理库-Mikolajczyk图像库.bark.bikes.boat.graf.leuven.trees.ubc.wall.包括.ppm格局和转换好的.png格局的图片数据集
2018/3/3 6:48:05 100.6MB 图像处理数据集
1
2进制PPM脉冲编码调制MATLAB源代码,喜欢的可以尝尝!
2015/7/23 20:09:13 2KB 信号与系统 PPM脉冲编码
1
瓷介电容器可分为低压低功率和高压高功率,在低压低功率中又可分为I型(CC型)和II型(CT型)。
  I型(CC型)特点是体积小,损耗低,电容对频率,温度稳定性都较高,常用于高频电路。
  II型(CT型)特点是体积小,损耗大,电容对温度频率,稳定性都较差,常用于低频电路。
  CC1型圆片高频瓷介电容器:适用于谐振回路及其他电路做温度补偿,耦合,隔直使用。
  允许偏差:5p(+-0.5p)6-10p(+-1P)10p以上(J,K,M)温度系数:-150----1000PPM/C环境温度:-25-85C相对湿度:+40C时达96%  CT1型圆形低频瓷介电容:环境温度:-
2022/9/21 14:26:21 54KB 瓷介电容器分类及性能
1
瓷介电容器可分为低压低功率和高压高功率,在低压低功率中又可分为I型(CC型)和II型(CT型)。
  I型(CC型)特点是体积小,损耗低,电容对频率,温度稳定性都较高,常用于高频电路。
  II型(CT型)特点是体积小,损耗大,电容对温度频率,稳定性都较差,常用于低频电路。
  CC1型圆片高频瓷介电容器:适用于谐振回路及其他电路做温度补偿,耦合,隔直使用。
  允许偏差:5p(+-0.5p)6-10p(+-1P)10p以上(J,K,M)温度系数:-150----1000PPM/C环境温度:-25-85C相对湿度:+40C时达96%  CT1型圆形低频瓷介电容:环境温度:-
2022/9/21 14:25:27 54KB 瓷介电容器分类及性能
1
RK固件解包工具FWFactoryTool5.50(支持3399/3288)1、让内核支持启动LOGO在内核目录中makemenuconfigDeviceDrivers---->Graphicssupport---->选中Bootuplogo---->Standard224-colorLinuxlogo2、制造开机logo的图片将要当作开机LOGO的图片按照你屏幕的大小进行裁减,并将其保存为bmp格式或png格式;例如linuxlogo.bmp或linuxlogo.png在linux下输入以下命令(forbmp):#bmptoppmlinuxlogo.bmp>linuxlogo.ppm
2015/4/27 23:43:28 45.04MB rk
1
词文档详细的描述了PPM调制和解调的原理
2015/3/7 13:37:40 587KB PPM 调制
1
共 31 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡