CNN_classification_feature_extraction该存储库是pytorch中用于分类和特征提取的CNN的实现。
Pytorch预训练的模型已被用于其解释。
该代码支持数据并行性和多GPU,提早停止和类权重。
此外,您可以选择加载预训练的权重(在ImageNet数据集上进行训练)或使用随机权重从头开始训练。
预训练的模型结构在最初一层有1000个节点。
此代码将所有模型的最初一层修改为可与每个数据集兼容。
可以使用以下模型:'resnet18','resnet34','resnet50','resnet101','resnet152','resnext50_32x4d','resnext101_32x8d','wide_resnet50_2','wide_resnet101_2','vgg11','vgg11_bn','vgg13'
2022/9/4 23:46:38 19KB Python
1
category_and_d3运用分类算法预测高血压,并运用d3对结果进行基本可视化####文件夹结构:3天包含用于创建d3条形图的.html文件和.csv数据文件。
*precision.html带有CSS和javascript的html文件。
运用“d3.js”(带有工具提示)库来生成图形,pure_accuracy.csv数据集,该数据集会由precision.html*callback.html带有CSS和javascript的html文件运用。
运用“d3.js”(带有工具提示)库来生成图*pivot_recall.csv数据集,该图*由css和javascript运用的callback.html*feature_importance.htmlhtml文件运用。
运用d3.js库,还运用过渡来生成图形sql包含.sql脚本以生成分类模型中运用的
2015/3/23 3:05:23 11.73MB HTML
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡