研究了相对论效应引起的场量的非线性对谐波辐射源的影响;
在入射光为长脉冲激光并计及各阶谐波间的耦合时,解析研究了的三次谐波的振幅、频率、相位的变化及增长与饱和特性并计算了转化率,结果表明谐波间的耦合使幅值和转化率减少。
1
ansoftmaxwell破解版功能特点求解器(Solver)● 二维求解器(XY平面求解、轴对称平面求解)、三维求解器● 磁场求解:静磁场、交流磁场(频率响应)、瞬态磁场● 电场求解:静电场、直流传导场、交流传导场(2D)、瞬态电场(3D)● 矢量有限元法输出结果● 电磁场、能量分布(标量场、矢量场)— 磁场、电场、电流密度、损耗、功率等标量场/矢量场可以通过后处理得到其他物理量● 设计参数— 电磁力、力矩、电阻、电感、电容● 可以用图表或文本方式输出GUI和建模功能● Windows风格的图形化操作、快捷工具栏● 自带3DCAD建模功能,方便直观的操作● 变量、函数的使用— 对于部件的外形尺寸、位置、材料特性、边界条件等,可以将输入值作为变量进行参数化扫描和优化分析,而且变量之间不仅可以进行四则运算,而且还可以进行三角函数、对数函数等各种函数运算。
各种功能● 标准CAD接口:SAT、SAB、DXF、DWG。
● 对从外部CAD导入的模型进行分析并自动修复。
● 各种边界条件:对称边界、周期性边界、绝缘边界、阻抗边界等。
● 各种非线性材料:各向异性、永磁体、叠压材料等。
● 铁芯损耗计算。
● 永磁体的充磁和退磁计算。
● 运动求解,基于运动方程式的可变速响应求解。
● 与Maxwell自带的电路编辑器可以动态链接。
● 与机电系统控制软件实现行为级动态耦合仿真。
● 与结构、热、流体仿真器联合实现多物理域仿真。
(ANSYS、ANSYSFluent)● 可以从辅助设计工具直接读入模型(ANSYSRMxprt、ANSYSPExprt)● 作为近场辐射源,链接到高频电磁场求解器计算(ANSYSHFSS)● 脚本支持(VB、JAVA、IronPython)● 批处理求解选项● CAD接口(AnsoftlinksforMCAD):— IGES、STEP、CREO(原ProE)、Unigraphics、Parasolid、CATIAV4/V5● 作参数扫描、优化、统计分析(Optimetrics、ANSYSDesignXplorer)● 多核并行计算(HPC)● 多核或网络多个计算节点的分布式高性能计算(DSO、HPC)铁芯损耗计算将铁芯损耗计算中广泛采用的经典steinmetz法进行了改良和修正,提出了改良后的steinmetz法。
经典steinmetz法计算铁耗是通过后处理完成的,没有考虑铁芯损耗对磁场分布的影响。
在ANSYSMaxwell中用到的改良后的steinmetz法计算铁芯损耗,能够在计算铁芯损耗的同时,考虑铁芯损耗对磁场的影响。
非线性各向异性材料ANSYSMaxwell的非线性各向异性材料可以考虑材料在轴向方向的不对称性。
对于磁性材料和硅钢板等各向异性材料,可以进行精确地分析。
对于难以建立实际模型的叠压材料——如电磁钢等,可以方便地使用等效模型进行建模和参数设置。
脚本ANSYS电磁产品大部分支持VB/JAVA脚本,以及IronPython语言。
从软件启动、建模到输出求解结果等整个流程都可以通过脚本记录下来,以方便构建自动化求解环境。
适用案例Maxwell3D所采用的新的数值计算方法大大加快了软件计算速度,同时避免了非现实物理解,从而使得三维运动仿真能够得到实际应用。
2025/3/3 20:48:22 199B ansoft maxwell 电磁仿真
1
两轮自平衡小车是一类非完整的本征不稳定系统,其动力学方程具有复杂非线性、高阶次、强耦合、欠驱动等特点,采用牛顿力学分析法进行系统建模,利用前馈、反馈以及输入量构成自适应机构,在此基础上提出模型参考自适应控制(ModelReferenceAdaptiveControl,MRAC)策略对两轮自平衡小车的姿态和速度进行控制。
通过仿真,结果表明采用MRAC算法能够在保证系统稳定的前提下,获得接近于给定理想参考模型的动态性能,并使系统在平衡点附近具有良好的鲁棒性。
2025/3/3 9:10:09 576KB 论文研究
1
基于Simplorer场路耦合多物理域联合仿真,网上找了好久才找到这个资源,看了下主要内容,感觉很不错,支持各种系统。
2025/3/2 9:25:25 99.23MB Simplorer
1
干货!绝对干货!!还在为comsol多场耦合学习犯愁吗?几个课时的comsol多场耦合经典实例讲解,带你迅速入门、掌握comsol应用的核心关键技术!
2025/2/23 2:19:10 202.99MB 经典实例讲解
1
ActiveMQ优点:   (1)跨平台(JAVA编写与平台无关有,ActiveMQ几乎可以运行在任何的JVM上) (2)支持多种语言 (3)降低系统间模块的耦合度,解耦(消息的发送方和接收方并不需要彼此联系,也不需要受对方的影响,即解耦和) (4)对Spring的,软件扩展性好 (5)自动重连功能
2025/2/21 4:56:32 62.77MB mqtt
1
基于混合耦合开环谐振器的UHF三阶5位数字可调带通滤波器
2025/2/19 16:02:07 367KB 研究论文
1
在本文中,提出了一种通过双量子点系统冷却纳米机械谐振器(NMR)的方案,提出了附加在铁磁引线上的额外驱动场。
它表明,对于铁磁的组合铅,它可以达到比普通铅更低的温度。
这也揭示了当前噪声在冷却中起着至关重要的作用,并且从理论上讲也提供了一种检测冷却水平的方法。
NMR。
2025/1/24 13:20:10 580KB 研究论文
1
EMC(电磁兼容)问题分析与解决是电子设计和测试领域的重要议题。
在产品设计和开发过程中,EMC测试确保产品能够正常工作而不受电磁干扰影响,同时也不会对外部环境产生不可接受的电磁干扰。
EMC测试包括辐射发射测试、传导发射测试和静电放电测试。
辐射发射超标意味着产品在工作时对外发射的电磁波超过了限制标准,导致的电磁干扰可能导致其他设备不能正常工作。
传导发射超标则是指通过电源线或其他连接线路发出的干扰电流超过了标准。
静电放电问题则关注的是产品对外部静电放电的抵抗能力。
在EMC问题分析中,可以识别几个主要的要素:干扰源、耦合路径和敏感设备。
只有当这三个要素都存在时,才会形成EMC问题。
对于干扰源,常见的包括开关电源、继电器、马达、时钟等。
它们在运作过程中产生的电磁波可能超出限制,导致EMI(电磁干扰)问题。
耦合路径是干扰信号传输的通道,比如电缆、PCB线路、空间等。
敏感设备则是对电磁干扰比较敏感的电子组件。
工程师在进行EMC问题解决时,首先需要定位问题的源头。
定位的方式可以分为直觉判断和比较测试。
直觉判断依赖于工程师的经验积累,而比较测试则结合测试仪器和经验进行详细的定位。
对于辐射发射问题的解决,可以通过以下方法:1.减小差模信号的环路面积:在电路板设计阶段,通过合理布局,尽量减少差模电流形成的环路面积,从而降低辐射。
2.减小共模信号的回路路径:优化PCB布局设计,缩短共模电流的路径,减少辐射。
3.加大共模阻抗:在电源线路和信号线路上增加共模扼流圈、共模滤波器等,提高共模信号的阻抗,减少高频噪声电流。
4.增大干扰源与敏感电路的距离:物理上远离干扰源和敏感设备,以减少相互间的耦合。
另外,对于辐射发射超标的原因,工程师应该对辐射图进行分析,根据扫描图的不同形态判断出可能的问题所在。
例如,在30-300MHz频段内呈现包状扫描图,可能是电源问题引起的;
而扫描图中出现尖点,则可能是由电路中的晶振电路的倍频引起的。
通过频谱分析,在样机上找到远场中出现的频点,可以帮助确定辐射源。
此外,还可以采取一些基本的EMC设计措施,比如:-在连接线处加上磁环,以减少高频信号的辐射。
-使用屏蔽线缆,降低信号线的辐射和抗扰度。
-对PCB板的接口进行滤波处理,减少高频干扰信号的泄漏。
EMC问题的解决需要工程师在产品设计前期就充分考虑电磁兼容性问题,通过优化电路设计、PCB布局、器件选型以及采取适当的屏蔽和滤波措施,减少电磁干扰,确保产品能够通过EMC测试。
即使在产品设计阶段没有充分考虑EMC问题,通过后期的分析与整改,也可以有效解决EMC问题,达到电磁兼容标准。
2025/1/10 21:22:46 4.64MB 辐射超标 EMC测试 电磁兼容 干扰解决
1
共 262 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡