Publisher:PrenticeHallPTRPubDate:September15,2003ISBN:0-13-066946-6Pages:608Section2.7.TheSpectrumofanIdealSquareWaveSection2.8.FromtheFrequencyDomaintotheTimeDomainSection2.9.EffectofBandwidthonRiseTimeSection2.10.BandwidthandRiseTimeSection2.11.WhatDoes"Significant"Mean?Section2.12.BandwidthofRealSignalsSection2.13.BandwidthandClockFrequencySection2.14.BandwidthofaMeasurementSection2.15.BandwidthofaModelSection2.16.BandwidthofanInterconnectSection2.17.BottomLineChapter3.ImpedanceandElectricalModelsSection3.1.DescribingSignal-IntegritySolutionsinTermsofImpedanceSection3.2.WhatIsImpedance?Section3.3.Realvs.IdealCircuitElementsSection3.4.ImpedanceofanIdealResistorintheTimeDomainSection3.5.ImpedanceofanIdealCapacitorintheTimeDomainSection3.6.ImpedanceofanIdealInductorintheTimeDomainSection3.7.ImpedanceintheFrequencyDomainSection3.8.EquivalentElectricalCircuitModelsSection3.9.CircuitTheoryandSPICESection3.10.IntroductiontoModelingSection3.11.TheBottomLineChapter4.ThePhysicalBasisofResistanceSection4.1.TranslatingPhysicalDesignintoElectricalPerformanceSection4.2.TheOnlyGoodApproximationfortheResistanceofInterconnectsSection4.3.BulkResistivitySection4.4.ResistanceperLengthSection4.5.SheetResistanceSection4.6.TheBottomLineChapter5.ThePhysicalBasisofCapacitanceSection5.1.CurrentFlowinCapacitorsSection5.2.TheCapacitanceofaSphereSection5.3.ParallelPlateApproximationSection5.4.DielectricConstantSection5.5.PowerandGroundPlanesandDecouplingCapacitanceSection5.6.CapacitanceperLengthSection5.7.2DFieldSolversSection5.8.EffectiveDielectricConstantSection5.9.TheBottomLineChapter6.ThePhysicalBasisofInductanceSection6.1.WhatIsInductance?Section6.2.InductancePrinciple#1:ThereAreCircularMagneti
2023/2/10 16:14:46 12.15MB Signal Integrity
1
由于目前大多数交互式Graph-Cut分割算法很难达到精确分割且实时交互的效果.对此,提出一种基于局部颜色模型的改进算法.该算法利用Mean-Shift预分割,建立基于局部颜色模型的交互式分割框架,并将像素级的Graph-Cut算法转化为基于区域的算法进行快速求解.预分割之后的区域保持了原有图像的结构,不只提高了采用局部颜色模型估计分布的准确性,而且基于区域Graph-Cut的算法明显降低了计算的复杂度.实验结果表明,改进后的算法不只保证了分割的精确性,而且还达到了实时交互.
1
clearall;closeall;fs=8e5;%抽样频率fm=20e3;%基带频率n=2*(6*fs/fm);final=(1/fs)*(n-1);fc=2e5;%载波频率t=0:1/fs:(final);Fn=fs/2;%耐奎斯特频率%用正弦波产生方波%==========================================twopi_fc_t=2*pi*fm*t;A=1;phi=0;x=A*cos(twopi_fc_t+phi);%方波am=1;x(x>0)=am;x(x<0)=-1;figure(1)subplot(321);plot(t,x);axis([02e-4-22]);title('基带信号');gridoncar=sin(2*pi*fc*t);%载波ask=x.*car;%载波调制subplot(322);plot(t,ask);axis([0200e-6-22]);title('PSK信号');gridon;%=====================================================vn=0.1;noise=vn*(randn(size(t)));%产生乐音subplot(323);plot(t,noise);gridon;title('乐音信号');axis([0.2e-3-11]);askn=(ask+noise);%调制后加噪subplot(324);plot(t,askn);axis([0200e-6-22]);title('加噪后信号');gridon;%带通滤波%======================================================================fBW=40e3;f=[0:3e3:4e5];w=2*pi*f/fs;z=exp(w*j);BW=2*pi*fBW/fs;a=.8547;%BW=2(1-a)/sqrt(a)p=(j^2*a^2);gain=.135;Hz=gain*(z+1).*(z-1)./(z.^2-(p));subplot(325);plot(f,abs(Hz));title('带通滤波器');gridon;Hz(Hz==0)=10^(8);%avoidlog(0)subplot(326);plot(f,20*log10(abs(Hz)));gridon;title('Receiver-3dBFilterResponse');axis([1e53e5-31]);%滤波器系数a=[100.7305];%[10p]b=[0.1350-0.135];%gain*[10-1]faskn=filter(b,a,askn);figure(2)subplot(321);plot(t,faskn);axis([0100e-6-22]);title('通过带通滤波后输出');gridon;cm=faskn.*car;%解调subplot(322);plot(t,cm);axis([0100e-6-22]);gridon;title('通过相乘器后输出');%低通滤波器%==================================================================p=0.72;gain1=0.14;%gain=(1-p)/2Hz1=gain1*(z+1)./(z-(p));subplot(323);Hz1(Hz1==0)=10^(-8);%avoidlog(0)plot(f,20*log10(abs(Hz1)));gridon;title('LPF-3dBresponse');axis([05e4-31]);%滤波器系数a1=[1-0.72];%(z-(p))b1=[0.140.14];%gain*[11]so=filter(b1,a1,cm);so=so*10;%addgainso=so-mean(so);%removesDCcomponentsubplot(324);
2016/5/8 20:09:29 589KB matlab PSK 调制与解调
1
共有七个完整算法%1.基于聚类的RBF网设计算法%一维输入,一维输出,逼近效果很好!SamNum=100;%总样本数TestSamNum=101;%测试样本数InDim=1;%样本输入维数ClusterNum=10;%隐节点数,即聚类样本数Overlap=1.0;%隐节点重叠系数%根据目标函数获得样本输入输出rand('state',sum(100*clock))NoiseVar=0.1;Noise=NoiseVar*randn(1,SamNum);SamIn=8*rand(1,SamNum)-4;SamOutNoNoise=1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2);SamOut=SamOutNoNoise+Noise;TestSamIn=-4:0.08:4;TestSamOut=1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(-TestSamIn.^2/2);figureholdongridplot(SamIn,SamOut,'k+')plot(TestSamIn,TestSamOut,'r--')xlabel('Inputx');ylabel('Outputy');Centers=SamIn(:,1:ClusterNum);NumberInClusters=zeros(ClusterNum,1);%各类中的样本数,初始化为零IndexInClusters=zeros(ClusterNum,SamNum);%各类所含样本的索引号while1,NumberInClusters=zeros(ClusterNum,1);%各类中的样本数,初始化为零IndexInClusters=zeros(ClusterNum,SamNum);%各类所含样本的索引号%按最小距离原则对所有样本进行分类fori=1:SamNumAllDistance=dist(Centers',SamIn(:,i));[MinDist,Pos]=min(AllDistance);NumberInClusters(Pos)=NumberInClusters(Pos)+1;IndexInClusters(Pos,NumberInClusters(Pos))=i;end%保存旧的聚类中心OldCenters=Centers;fori=1:ClusterNumIndex=IndexInClusters(i,1:NumberInClusters(i));Centers(:,i)=mean(SamIn(:,Index)')';end%判断新旧聚类中心能否一致,是则结束聚类EqualNum=sum(sum(Centers==OldCenters));ifEqualNum==InDim*ClusterNum,break,endend%计算各隐节点的扩展常数(宽度)AllDistances=dist(Centers',Centers);%计算隐节点数据中心间的距离(矩阵)Maximum=max(max(AllDistances));%找出其中最大的一个距离fori=1:ClusterNum%将对角线上的0替换为较大的值AllDistances(i,i)=Maximum+1;endSpreads=Overlap*min(AllDistances)';%以隐节点间的最小距离作为扩展常数%计算各隐节点的输出权值Distance=dist(Centers',SamIn);%计算各样本输入离各数据中心的距离SpreadsMat=repmat(Spreads,1,SamNum);HiddenUnitOut=radbas(Distance./SpreadsMat);%计算隐节点输出阵HiddenUnitOutEx=[HiddenUnitOut'ones(SamNum,1)]';%考虑偏移W2Ex=SamOut*pinv(HiddenUnitOutEx);%求广义输出权值W2=W2Ex(:,1:ClusterNum);%输出权值B2=W2Ex(:,ClusterNum+1)
2017/4/12 3:58:08 8KB rbf算法源程序
1
电子商务均值堆栈对于服务器:技术:Node.js,express.js,mongodb要运行服务器,请运行npmstartHitlocalhost:3000对于客户:技术:javascript,Angular8要运行客户端,请运行ngserve
2015/7/22 16:02:56 744KB nodejs javascript angular typescript
1
Mean-shiftMATLABcode.简单易用。
当前比较盛行的聚类方法
2022/9/5 17:45:35 3KB Mean-shift Clustering
1
部分代码:function[a,b]=fisher(A,B,X,h)%A,B表示A,B类的数据,X表示未知类别的数据。
%A,B,X的列表示不同的目标,行表示一个个体。
%h为显著性水平。
average1=mean(A);average2=mean(B);m=size(A,1);n=size(B,1);p=size(A,2);fori=1:p
2022/9/4 4:30:24 652B fisher判别 matlab源程序代码
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡