首页 开发技术 C++     /    深度学习之卷积神经收集CNN方式识别VS代码

深度学习之卷积神经收集CNN方式识别VS代码

上传者: dpstill | 上传时间:2023/4/7 20:45:08 | 文件大小:10.29MB | 文件类型:rar
深度学习之卷积神经收集CNN方式识别VS代码
深度学习之卷积神经收集CNN做手写体识另外VS代码。
反对于linux版本以及VS2012版本。
tiny-cnn:AC++11implementationofconvolutionalneuralnetworks========tiny-cnnisaC++11implementationofconvolutionalneuralnetworks.designprinciple-----*fast,withoutGPU98.8%accuracyonMNISTin13minutestraining(@Corei7-3520M)*headeronly,policy-baseddesignsupportednetworks-----###layer-types*fully-connectedlayer*convolutionallayer*averagepoolinglayer###activationfunctions*tanh*sigmoid*rectifiedlinear*identity###lossfunctions*cross-entropy*mean-squared-error###optimizationalgorithm*stochasticgradientdescent(with/withoutL2normalization)*stochasticgradientlevenbergmarquardtdependencies-----*boostC++library*IntelTBBsamplecode------```cpp#include"tiny_cnn.h"usingnamespacetiny_cnn;//specifyloss-functionandoptimization-algorithmtypedefnetworkCNN;//tanh,32x32input,5x5window,1-6feature-mapsconvolutionconvolutional_layerC1(32,32,5,1,6);//tanh,28x28input,6feature-maps,2x2subsamplingaverage_pooling_layerS2(28,28,6,2);//fully-connectedlayersfully_connected_layerF3(14*14*6,120);fully_connected_layerF4(120,10);//connectallCNNmynet;mynet.add(&C1);mynet.add(&S2);mynet.add(&F3);mynet.add(&F4);assert(mynet.in_dim()==32*32);assert(mynet.out_dim()==10);```moresample,readmain.cppbuildsampleprogram------###gcc(4.6~)withouttbb./wafconfigure--BOOST_ROOT=your-boost-root./wafbuildwithtbb./wafconfigure--TBB--TBB_ROOT=your-tbb-root--BOOST_ROOT=your-boost-root./wafbuildwithtbbandSSE/AVX./wafconfigure--AVX--TBB--TBB_ROOT=your-tbb-root--BOOST_ROOT=your-boost-root./wafbuild./wafconfigure--SSE--TBB--TBB_ROOT=your-tbb-root--BOOST_ROOT=your-boost-root./wafbuildoreditinlude/co 本软件ID:6934287

文件下载

资源详情

[{"title":"(35个子文件10.29MB)深度学习之卷积神经网络CNN模式识别VS代码","children":[{"title":"cnn_vs2012","children":[{"title":"vc","children":[{"title":"train-images.idx3-ubyte <span style='color:#111;'>44.86MB</span>","children":null,"spread":false},{"title":"t10k-labels.idx1-ubyte <span style='color:#111;'>9.77KB</span>","children":null,"spread":false},{"title":"t10k-images.idx3-ubyte <span style='color:#111;'>7.48MB</span>","children":null,"spread":false},{"title":"tiny_cnn.vcxproj <span style='color:#111;'>5.72KB</span>","children":null,"spread":false},{"title":"test.vcxproj.filters <span style='color:#111;'>1.89KB</span>","children":null,"spread":false},{"title":"tiny_cnn.sln <span style='color:#111;'>1.29KB</span>","children":null,"spread":false},{"title":"tiny_cnn_test.vcxproj <span style='color:#111;'>4.34KB</span>","children":null,"spread":false},{"title":"train-labels.idx1-ubyte <span style='color:#111;'>58.60KB</span>","children":null,"spread":false},{"title":"cnn.vcxproj.filters <span style='color:#111;'>1.99KB</span>","children":null,"spread":false}],"spread":true},{"title":"waf <span style='color:#111;'>88.35KB</span>","children":null,"spread":false},{"title":"wscript <span style='color:#111;'>1.47KB</span>","children":null,"spread":false},{"title":"include","children":[{"title":"fully_connected_layer.h <span style='color:#111;'>4.92KB</span>","children":null,"spread":false},{"title":"config.h <span style='color:#111;'>1.88KB</span>","children":null,"spread":false},{"title":"convolutional_layer.h <span style='color:#111;'>6.12KB</span>","children":null,"spread":false},{"title":"picotest.h <span style='color:#111;'>22.82KB</span>","children":null,"spread":false},{"title":"mnist_parser.h <span style='color:#111;'>4.50KB</span>","children":null,"spread":false},{"title":"fixed_point.h <span style='color:#111;'>5.66KB</span>","children":null,"spread":false},{"title":"util.h <span style='color:#111;'>5.32KB</span>","children":null,"spread":false},{"title":"network.h <span style='color:#111;'>13.11KB</span>","children":null,"spread":false},{"title":"product.h <span style='color:#111;'>12.23KB</span>","children":null,"spread":false},{"title":"optimizer.h <span style='color:#111;'>2.67KB</span>","children":null,"spread":false},{"title":"deform.h <span style='color:#111;'>1.92KB</span>","children":null,"spread":false},{"title":"loss_function.h <span style='color:#111;'>2.05KB</span>","children":null,"spread":false},{"title":"image.h <span style='color:#111;'>4.53KB</span>","children":null,"spread":false},{"title":"layer.h <span style='color:#111;'>9.99KB</span>","children":null,"spread":false},{"title":"average_pooling_layer.h <span style='color:#111;'>3.42KB</span>","children":null,"spread":false},{"title":"activation_function.h <span style='color:#111;'>3.54KB</span>","children":null,"spread":false},{"title":"tiny_cnn.h <span style='color:#111;'>1.87KB</span>","children":null,"spread":false},{"title":"partial_connected_layer.h <span style='color:#111;'>8.50KB</span>","children":null,"spread":false}],"spread":false},{"title":"src","children":[{"title":"test.cpp <span style='color:#111;'>14.81KB</span>","children":null,"spread":false},{"title":"wscript <span style='color:#111;'>352B</span>","children":null,"spread":false},{"title":"main.cpp <span style='color:#111;'>6.60KB</span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'>2.06KB</span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'>2.00KB</span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'>483B</span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • anruo12138:
    觉得很实用,非常希望都能传些高质量的东西2019-11-04
  • ll79444326:
    不过有借鉴价值谢谢分享2018-07-21
  • ghxx2010:
    代码一般,可读性不强2018-04-09
  • worldy:
    真是晕,我都按取消了还没有下载,就要我CSDN还没看内容就要打分,我也是醉了2018-01-12
  • hongyi6814:
    我用迅雷下的,怎么说找不到网页2018-01-05

免责申明

【好快吧下载】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【好快吧下载】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【好快吧下载】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,8686821#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明