MATLAB工具包DEEPLEARNINGTOOLBOX(一)DeepLearningToolbox™提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。
我们可以使用卷积神经网络(ConvNet、CNN)和长短期记忆(LSTM)网络对图像、时序和文本数据执行分类和回归。
2024/10/23 7:57:32 216.9MB 深度学习
1
用于动作识别的3DResNet这是以下论文的PyTorch代码:该代码仅包括对ActivityNet和Kinetics数据集的培训和测试。
如果您想使用我们的预训练模型对视频进行分类,请使用。
提供了此代码的PyTorch(python)版本。
PyTorch版本包含其他模型,例如预激活ResNet,WideResNet,ResNeXt和DenseNet。
引文如果您使用此代码或预先训练的模型,请引用以下内容:@article{hara3dcnns,author={KenshoHaraandHirokatsuKataokaandYutaka
2024/10/19 8:22:28 24KB computer-vision lua deep-learning torch7
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
faster_rcnn_models下载链接。
2024/8/26 17:09:30 238B faster rcnn models
1
Ncsdk_ssd网络_咖啡训练模型。
ncsdk的caffe例子里面有时候下载不了这个文件。
导致运行失败,所以上传一份方便大家下载
2024/8/23 1:47:12 22.08MB caffemodel
1
tensorflow为后端的keras框架实现遥感场景分类,使用的模型为VGG16和Resnet50,可以从头自己训练模型,也可以使用迁移学习,进行模型微调
2024/7/15 13:52:05 unknown 遥感场景分类 VGG16 Resnet50 keras
1
Kong流网PoreFlow-Net的实现:一个3D卷积神经网络,预测通过多Kong介质的流体流量使用说明从下载所需的数据(或通过首选的模拟方法创建自己的数据)使用train.py脚本训练模型模型架构这是我们的网络的样子:方法先决条件为了训练/测试我们使用的Tensorflow1.12模型,应该可以使用更新的版本其余的必要软件包应通过pip获得数据完整的出版物和所有培训/测试数据可在找到。
excel文件随可用样本列表一起提供。
有待改进keras调谐器可用于优化每个编码分支上的过滤器数量协同合作我们欢迎合作引文如果您将我们的代码用于自己的研究,请引用我们的出版物,我们将不胜感激@article{PFN2020,title="PoreFlow-Net:a3Dconvolutionalneuralnetworktopredictfluidflowthroughporousmedia",journal="AdvancesinWaterResources",pages="103539",year=
2024/7/12 8:41:11 19.65MB machine-learning tensorflow gpu keras
1
已标注好的数据集,已经分割好。
可直接用于训练模型。
已做好标注。
分为license_province,license_number,license_province
1
TensorFlowVGG-16预训练模型,用于SSD-TensorFlow的Demo训练.
2024/4/15 20:21:16 489.54MB TensorFlow vgg_16.ckpt
1
提供预训练模型,运行eval.py即可,如果没有GPU,则请删除.cuda()
2024/4/15 6:36:02 130.54MB 深度学习 边缘检测
1
共 94 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡