多波长放大是能够有效抑制窄线宽光纤放大器中受激布里渊散射(SBS)效应的一种新方法。
对其基本理论进行了详细的介绍,并按照波长间隔的不同将其分为大波长间隔和小波长间隔多波长放大两种类型。
综述了这两类多波长放大方法在理论研究和实验研究方面取得的重要成果,分析了它们各自由抑制SBS上的优势,指出大波长间隔多波长放大在提高单频激光输出功率方面具有明显优势,而小波长间隔多波长放大在进一步提升高功率光纤激光相干合成系统功率方面具有巨大的应用价值。
1
文本分类技术经历了从专家系统到机器学习再到深度学习的发展过程。
在20世纪80年代以前,基于规则系统的文本分类方法需要领域专家定义一系列分类规则,通过规则婚配判断文本类别。
2021/2/22 19:33:17 1.34MB 深度学习 文本分类
1
光子晶体光纤的出现,为高功率光纤激光器的关键技术-大模区光纤的实现提供了新途径。
基于铒镱共掺磷酸盐材料的包层掺杂新结构出现,为实现愈加紧凑的光纤激光器提供了可能。
常规高功率光纤激光器中的抽运技术,谐振腔技术和相干组束技术也在不断融入高功率光子晶体光纤激光器。
高功率光子晶体光纤激光器的调Q和锁模输出也已经实现。
2019/11/15 15:51:05 1.23MB 光纤光学 光纤激光 光子晶体
1
目前基于深度学习模型的预测在真实场景中具有不确定性和不可解释性,给人工智能应用的落地带来了不可避免的风险。
首先阐述了风险分析的必要性以及其需要具备的3个基本特征:可量化、可解释、可学习。
接着,分析了风险分析的研究现状,并重点引见了笔者最近提出的一个可量化、可解释和可学习的风险分析技术框架。
最后,讨论风险分析的现有以及潜在的应用,并展望其未来的研究方向。
1
空时自适应信号处理_王永良,彭应宁著.pdf空时自适应信号处理(STAP)是相控阵机载雷达杂波抑制与目标检测的关键技术,已成为雷达界抢手的研究方向。
本书以相控阵机载预警雷达为背景,系统、深入地阐述了空时自适应处理的理论、方法及面向实际工程应用所涉及的有关问题。
书中总结了作者多年来的研究成果以及国际上这一领域的研究进展
全书由十一章组成。
主要内容有空时自适应处理的研究进展及其相关问题,机载相控阵雷达杂波特性及其分析,空时自适应处理基本概念与原理,空时自适应处理的典型方法与分析,空时自适应处理的统一理论与处理框架,天线非正侧面阵放置时的空时自适应处理,杂波和有源干扰同时抑制的方法,空时自适应处理的权值算法等。
此外,书中还专门介绍了传统的机载雷达杂波抑制技术。
本书是关于空时自适应处理的一部专著,可作为雷达领域的专业参考书,也可作为研究生的选修教材,对从事通信、导航与声纳等领域的专业技术人员也有一定的参考价值。
2022/9/7 23:28:36 4.66MB 空时自适应信号处理
1
(含源码及报告)本程序分析了自2016年到2021年(外加)每年我国原油加工的产量,并且分析了2020年全国各地区原油加工量等,含饼状图,柱状图,折线图,数据在地图上显示。
运转本程序需要requests、bs4、csv、pandas、matplotlib、pyecharts库的支持,如果缺少某库请自行安装后再运转。
文件含6个excel表,若干个csv文件以及一个名字为render的html文件(需要用浏览器打开),直观的数据处理部分是图片以及html文件,可在地图中显示,数据处理的是excel文件。
不懂可以扫文件中二维码在QQ里面问。
2022/9/30 16:31:44 29.75MB 爬虫 python 源码软件 开发语言
1
递归神经网络(RNN)近些年来被越来越多地应用在机器学习领域,尤其是在处理序列学习任务中,相比CNN等神经网络功能更为优异。
但是RNN及其变体,如LSTM、GRU等全连接网络的计算及存储复杂性较高,导致其推理计算慢,很难被应用在产品中。
一方面,传统的计算平台CPU不适合处理RNN的大规模矩阵运算;
另一方面,硬件加速平台GPU的共享内存和全局内存使基于GPU的RNN加速器的功耗比较高。
FPGA由于其并行计算及低功耗的特性,近些年来被越来越多地用来做RNN加速器的硬件平台。
对近些年基于FPGA的RNN加速器进行了研究,将其中用到的数据优化算法及硬件架构设计技术进行了总结介绍,并进一步提出了未来研究的方向。
2017/3/13 16:19:19 1.39MB 递归神经网络 FGPA 加速器
1
《多目标智能优化算法及其应用》系统地引见了多目标智能优化算法理论与应用,力图全面地引见多目标智能优化算法的最新研究进展
全书共分为8章,主要内容包括:多目标进化算法、多目标粒子群算法、其他多目标智能优化算法、人工神经网络优化、交通与物流系统优化、多目标生产调度和电力系统优化及其他。
2015/5/19 23:08:09 28.32MB 多目标 优化
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡