基于直接数字频率合成技术(DDS),采用AT89S51单片机实现对DDS集成芯片AD9852的控制,产生频率和幅度可控的正弦信号,重点介绍了硬件接口电路设计以及频率、幅度控制的关键技术。
2023/10/5 18:32:35 406KB 正弦信号发生器 DDS
1
利用51单片机控制AD9850产生正弦信号,利用矩阵键盘实现实现频率预置,通过LCD1602显示预置频率
2023/10/1 10:21:12 24KB AD9859
1
现代信号谱分析·目录第1章 基本概念1.1 引言1.2 确定信号的能量谱密度1.3 随机信号的功率谱密度1.4 功率谱密度的性质1.5 谱估计问题1.6 补充内容1.7 习题第2章 非参数化方法2.1引言2.2 周期图和相关图方法2.3 用FFT计算周期图2.4 周期图法的性质2.5 Blackman-Tukey方法2.6 窗函数设计中需考虑的问题2.7 其他改进的周期图方法2.8 补充内容2.9 习题第3章 有理谱估计的参数化方法3.1引言3.2 有理谱信号3.3ARMA过程的协方差结构3.4AR信号3.5Yule-Walker方程的阶递推解法3.6MA信号3.7ARMA信号3.8 多变量ARMA信号3.9 补充内容3.10 习题第4章 线谱估计的参数化方法4.1引言4.2 噪声中的正弦信号模型4.3 非线性最小二乘方法4.4 高阶Yule-Walker方法4.5 Pisarenko和MUSIC方法4.6 最小模方法4.7 ESPRIT方法4.8 前向-后向方法4.9 补充内容4.10 习题第5章 滤波器组方法5.1 引言5.2 周期图的滤波器组解释5.3 改进的滤波器组方法5.4 Capon方法5.5 用滤波器组进一步解释周期图5.6 补充内容5.7 习题第6章 空域方法6.1引言6.2 阵列模型6.3 非参数化方法6.4 参数化方法6.5 补充内容6.6 习题附录A 线性代数和矩阵分析工具附录B Cramer-Rao界分析工具附录C 模型阶数选择方法附录D 部分习题答案参考文献
2023/9/21 11:11:11 21.38MB 现代信号谱分析
1
基于FPGA的FM调制与解调,资源为FM工程文件和说明文件,软件QuartusII11.0,语言verilogHDL,调制信号为正弦波,载波信号为正弦波,FM调制直接调频(DDS技术),FM解调非相干解调(微分,取绝对值,低通滤波器)。
一个完整的FM调制/解调系统主要分为模数(AD)转换器、FM调制器/解调器和数模(DA)转换器这三部分。
在本次设计中,信源用正弦波代替,载波同样也是正弦波,在FPGA内部通过DDS产生正弦信号来模拟AD采样数据。
在做FM解调器的实现时,调制器的输出直接在FPGA内部连接解调器的输入,不经过DAC输出与ADC输入,解调器直接输入调制后的离散的波形数据。
如图1所示,直接用数字已调信号代替量化后的模拟已调信号,虚线方框内的部分省略掉了。
2023/9/1 14:48:49 8.01MB FPGA调制解调 FM调制解调 Quartus II
1
基于方波信号的磁光调制具有优良的特性,但存在信号畸变的问题,从理论上研究了它的机理。
将方波信号通过傅里叶级数展开成不同频率正弦信号叠加的形式。
在此基础上用麦克斯韦方程组和贝塞尔方程对各个频率正弦信号的长螺线管空间磁场进行求解,再把经过处理的各正弦信号产生的磁场迭代运算,最终从理论上求解出方波信号驱动时的长螺线管磁场。
1
实现频谱分析。
能显示信号与频谱图。
主要是对正弦信号和三角波进行一维FFT变换,得到频谱图
2023/8/6 5:25:23 2.74MB 正弦信号 三角波 频谱分析 频谱图
1
msp430g2553测量交流信号幅值。
误差0.1%,范围为大于5hz的正弦信号。
msp430g2553测量交流信号幅值。
误差0.1%,范围为大于5hz的正弦信号。
2023/7/19 2:15:07 23KB msp430;g255
1
假设有一周期性正弦信号,受到均值为0,方差为5的高斯噪声干扰。
试设计一自适应滤波器处理观测信号,观察自适应滤波的学习过程和稳态信号。
2023/7/6 22:37:10 145KB 中科院 信号处理 自适应
1
本文首先利用MATLAB产生两个频率不一样的正弦信号,并将这两个正弦信号相加,得到一个混叠的波形;
然后利用MATLAB设计一个FIR低通滤波器,并由Verilog实现,联合ISE和Modelsim仿真,实现滤除频率较高的信号,并将滤波后的数据送到MATLAB中分析。
绝对原创。
2023/6/28 18:05:57 1.08MB FIR MATLAB
1
为提高线性调频连续波(LFMCW)雷达的测距精度,提出一种多段同频正弦信号频谱融合的测距算法。
首先,通过易于工程实现的间断采样方式,将LFMCW雷达若干规则区差拍信号采样为多段同频正弦信号,有效避开不规则区;其次,构造加权因子对多段规则区差拍采样信号频谱进行加权积累,得到最优加权积累频谱;然后,将多段规则区差拍采样信号的最优加权积累频谱和其累加频谱进行相关运算,得到频谱相关谱;最后,谱峰搜索频谱相关谱,实现差拍信号频率的精确估计,从而实现LFMCW雷达的高精度测距。
仿真和现场实验结果表明,在5~30m的测距范围内,该算法频率估计的平均绝对误差约为FFT+CZT法的1/5,测距精度始终保持在1mm以下,其平均测量误差约为DEVONL80手持激光测距仪的1/3,约为基于FFT+CZT的测距法的1/5。
1
共 51 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡