输入数据描摹:轴承缺陷数据,缺陷有十类,行使滑动窗口举行数据采样,一个样本大小为1024,每一类缺陷有1000个样本,总共10000个样本,输入数据方式为10000x1024,至关于1024个变量,标签付与one-hot编码,参数调解:ga妹妹a:责罚参数(自己调参),kernel:核函数(自己遴选)sigma:核函数宽度(自己调参)
1
k均值聚类的扩展,带核函数的k均值聚类以及多核k均值聚类
2023/3/23 18:03:55 2KB 科研
1
支持向量机SVM和核函数的MATLAB法式集。
支持向量机SVM和核函数的MATLAB法式集
2015/11/25 3:26:43 4.34MB 支持向量机 SVM 核函数 MATLAB
1
支持向量机SVM求解鸢尾花分类成绩,分别用rbf、poly、linear核函数求解
2020/1/12 19:11:05 4KB SVM 支持向量机 核函数
1
作为低秩矩阵逼近在图像处理中具有广泛的应用,其目的是根据退化图像的自类似性得到低秩矩阵来对图像进行去噪,如在计算机视觉和机器学习.低秩矩阵近似方法一般可分为两类,低秩矩阵分解(LowRankMatrixFactorization,LRMF)方法和核范数最小化(NuclearNormMinimization,NNM)方法。
2018/11/18 20:57:52 47KB 源代码 实用
1
中国科学技术大学汪增福模式识别课程课件。
第一章为绪论。
第二章引见统计模式识别中的几何方法,着重引见特征空间的概念和相关分类器的设计方法。
第三章引见统计模式识别中的概率方法,着重引见最小错误概率分类器、最小风险分类器、纽曼皮尔逊分类器和最小最大分类器以及概率密度函数的参数估计和非参数估计等。
第四章讨论典型分类器错误概率的计算问题。
第五章讨论无监督情况下的模式识别问题,着重引见几种典型的聚类算法:基于分裂的聚类方法、基于合并的聚类方法、动态聚类方法、基于核函数的聚类方法和近邻函数值聚类方法等。
第六章讨论结构模式识别问题,给出几种典型的文法规则和与之相关联的识别装置,包括有限状态自动机、下推自动机和图灵机等。
最后,在第七章对全书进行总结。
2021/11/8 11:51:08 25.28MB 中科大 汪增福 模式识别课件
1
引见几种常用核函数MATLAB的算法,附说明
2016/2/7 19:05:04 736B 核函数 算法
1
用matlab编程完成支持向量机分类,核函数选取,超平面建立等
2016/2/24 7:06:54 2KB SVM
1
相关向量机的MATLAB代码,经过验证是正确的,很实用推荐相关向量机(Relevancevectormachine,简称RVM)是Tipping在2001年在贝叶斯框架的基础上提出的,它有着与支持向量机(Supportvectormachine,简称SVM)一样的函数方式,与SVM一样基于核函数映射将低维空间非线性问题转化为高维空间的线性问题。
RVM原理步骤RVM通过最大化后验概率(MAP)求解相关向量的权重。
对于给定的训练样本集{tn,xn},类似于SVM,RVM的模型输出定义为y(x;w)=∑Ni=1wiK(X,Xi)+w0其中wi为权重,K(X,Xi)为核函。
因此对于,tn=y(xn,w)+εn,假设噪声εn服从均值为0,方差为σ2的高斯分布,则p(tn|ω,σ2)=N(y(xi,ωi),σ2),设tn独立同分布,则整个训练样本的似然函数可以表示出来。
对w与σ2的求解如果直接使用最大似然法,结果通常使w中的元素大部分都不是0,从而导致过学习。
在RVM中我们想要避免这个现像,因此我们为w加上先决条件:它们的机率分布是落在0周围的正态分布:p(wi|αi)=N(wi|0,α?1i),于是对w的求解转化为对α的求解,当α趋于无穷大的时候,w趋于0.RVM的步骤可以归结为下面几步:1.选择适当的核函数,将特征向量映射到高维空间。
虽然理论上讲RVM可以使用任意的核函数,但是在很多应用问题中,大部分人还是选择了常用的几种核函数,RBF核函数,Laplace核函数,多项式核函数等。
尤其以高斯核函数应用最为广泛。
可能于高斯和核函数的非线性有关。
选择高斯核函数最重要的是带宽参数的选择,带宽过小,则导致过学习,带宽过大,又导致过平滑,都会引起分类或回归能力的下降2.初始化α,σ2。
在RVM中α,σ2是通过迭代求解的,所以需要初始化。
初始化对结果影响不大。
3.迭代求解最优的权重分布。
4.预测新数据。
2021/2/5 11:51:53 17KB 相关向量机 rvm
1
支持向量数据描述(SupportVectorDataDescription,SVDD)语言:MATLAB版本:V2.1-----------------------------------------------------创作不易,欢迎各位5星好评~~~如有疑问或建议,请发邮件至:iqiukp@outlook.com可提供关于该算法/代码的付费咨询和有偿编写-----------------------------------------------------主要特点1.支持单值分类和二值分类的超球体构建2.支持多种核函数(linear,gaussian,polynomial,sigmoid,laplacian)3.支持2D或3D数据的决策边界可视化4.支持基于贝叶斯超参数优化、遗传算法和粒子群算法的SVDD的参数优化5.支持加权的SVDD-----------------------------------------------------注意1.SVDDV2.1仅支持R2016b以上的MATLAB版本2.正样本和负样本对应的标签分别为1和-13.提供了多个示例文件,每个文件的开头都有对应的引见4.此代码仅供参考5.可以阅读“SVDD-V2.1使用说明.pdf”文件了解更多用法
1
共 33 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡