最新版10.12.31,华为手表手环表盘开辟工具
2020/11/13 11:58:09 46.9MB 开发工具 华为 手表 手环
1
NRF24L012.4G无线模块功能概述:(1)2.4Ghz全球开放ISM频段免许可证使用(2)最高工作速率2Mbps,高效GFSK调制,抗干扰能力强,特别适合工业控制场合(3)支持串口动态地址修改,支持一对多,多对一的多机通信,修改灵活!(4)内置硬件CRC检错和点对多点通信地址控制(5)提供5v电源,低功耗3.3V工作。
(6)内置2.4Ghz天线,体积小巧约40*22mm(7)可连接支持单片机IO口控制、继电器模块控制、高低电平信号等的控制利用(8)内置专门稳压电路,外部提供5v电源,内部3.3V低功耗工作电压(9)具备26路单片机IO口,可以控制和驱动多种设备,降低开发难度和产品复杂度。
(10)采用单片机串口通讯协议,串口发送数据即可通过无线传输。
(11)兼容NRF24L01的无线设备,随意更改通信地址和串口通信波特率(可选波特率为:4800、9600、57600、115200)。
(12)全智能串口控制,发送特定指令,轻松实现各种IO高低电平、点动1s、IO口状态查询的信号控制功能!(13)如配套下载器可电脑USB操控发送接收控制IO等操作。
智能家居必备!(14)官方数据测试空旷通信距离100-200米,本店测试实际有障碍、1层穿墙距离10多米---(老实人说实际话)!实物展示:规格参数:大小:40*22MM供电电压:5VIO口输出:高电平3.3V通信方式:串口通信(TTL电平)使用方法简介:下面以连接电脑测试的方式进行解说!1、通过USB转TTL下载器,连接无线模块串口,做好串口通信准备工作。
2、打开串口调试工具,设置默认波特率为9600bps,选择正确的通信端口,打开串口。
3、现在可以在任意一个串口调试界面发送不超过31字节的数据到无线模块中,接收方只需有收到数据都会在串口调试界面中显示,发送方所发的内容。
4、如下控制IO口情况,可以发送特定的5位16进制吗。
例如0XA1,0XFD,0X01,0X00,0X01只需发送这一串字符后,接收方的IO口1输出低电平,对远程的IO控制操作极其方便。
更具体的指令请查看使用手册。
5、可结合本店的继电器模块简单便捷的实现远程高压控制,智能家居,智能小车,远程无线等等控制方案兼容。
6、如具备单片机基础,可以完成多点、多地址数据通信操作。
IO口操作指令表:(端口1、2举例)附件内容截图:实物购买链接:https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-15803265497.12.trOTmk&id=24685468283
2022/10/9 18:09:24 18.92MB 无线通信 nrf24l01 串口通信 电路方案
1
首先,读取利用数据绘制了31个省份的直方图和曲线图并进行分析;
其次,利用手肘法确定K均值聚类的K值并对数据31个样品进行K均值聚类;
再次;
利用K均值聚类的效果,采用同样分类个数的模糊C均值聚类方法对31个样品再次聚类,并得到了每个样品聚类的结果和概率;
最初,根据原始数据求得其协方差矩阵并进行主成分分析,基于生活经验与查阅资料对主成分进行解释和验证。
1
本书介绍了LDPC码的编、译码基本原理及各种译码算法;
详细分析了LDPC码的特点、分析方法;
对无线移动通信信道模型下LDPC码的功能进行了剖析。
各章原理的叙述力求突出概念清晰,注重理论推导和仿真试验验证相结合。
目录第一章绪论...............................................................................................................11.1数字通信系统的结构.........................................................................................11.2信道编码技术的发展史.....................................................................................31.3LDPC码的研究现状..........................................................................................5第二章信道编码基础....................................................................................................92.1分组码的基本原理............................................................................................92.1.1线性分组码的概念..................................................................................92.1.2生成矩阵和校验矩阵...............................................................................92.1.3线性分组码的最小距离..........................................................................112.1.4系统码..................................................................................................122.1.5循环码和准循环码.................................................................................122.2信道容量与Shannon(香农)限......................................................................142.2.1信道容量的定义....................................................................................152.2.2信道容量与Shannon限的关系...............................................................152.2.3信道容量与纠错码的关系......................................................................152.3多种信道条件下的信道容量............................................................................172.3.1二元对称信道(BSC)..........................................................................172.3.2连续AWGN信道...................................................................................192.3.3输入离散、输出连续AWGN信道的容量....................................
2019/6/6 20:53:18 4.29MB LDPC码 文红 符初生
1
[例3.6]某对称离散信道的信道转移概率矩阵P为:1/31/31/61/61/61/61/31/3计算其最佳信源概率和信道容量C。
附:程序代码如下:#include#include#defineMAX50doubleCalculate_a(intk,doublepa[]);doubleCalculate_C1(doublepa[],doublea[]);doubleCalculate_C2(doublea[]);intr,s;doublepba[MAX][MAX];voidmain(){ inti,j;doubleC1,C2,E; doublea[MAX],pa[MAX]; E=0.000001; printf("请输出信源符号个数r:\n"); scanf("%d",&r); printf("请输出信宿符号个数s:\n"); scanf("%d",&s); printf("请输出精确度E:\n"); scanf("%lf",&E); printf("请输出信源P[ai]:\n"); for(i=0;i<r;i++) scanf("%lf",&pa[i]); printf("请输出信道转移概率矩阵P[bj][ai]:\n"); for(i=0;i<r;i++) for(j=0;j<s;j++) scanf("%lf",&pba[i][j]); do { for(i=0;i=E) { doublesum=0; for(i=0;i<r;i++) sum+=pa[i]*a[i]; for(i=0;i<r;i++) pa[i]=pa[i]*a[i]/sum; } else { printf("最佳信源概率:\n"); for(i=0;i=E);printf("信道容量为:%lf\n",C1/log(2));}doubleCalculate_a(intk,doublepa[]){ inti,j; doubletemp,sum2=0; for(j=0;j<s;j++) { doublesum1=0; for(i=0;i<r;i++) { sum1+=pa[i]*pba[i][j]; } temp=pba[k][j]/sum1; temp=log(temp); sum2+=pba[k][j]*temp; } returnexp(sum2);}doubleCalculate_C1(doublepa[],doublea[]){ inti; doublesum=0; for(i=0;i<r;i++) sum+=pa[i]*a[i]; returnlog(sum);}doubleCalculate_C2(doublea[]){ inti; doublemax=a[0]; for(i=0;i<r;i++) if(max<a[i])max=a[i]; returnlog(max);}
1
tomcat-8.5.31免安装版,下载解压后就可以使用,适用于windows64位操作零碎
2021/2/23 19:33:18 10.42MB tomcat windows x64 8.5.31
1
第一章操作系统引论11.1操作系统的目标和作用11.2操作系统的发展过程51.3操作系统的基本特性131.4操作系统的次要功能161.5OS结构设计22习题31第二章进程的描述与控制322.1前趋图和程序执行322.2进程的描述352.3进程控制422.4 进程同步472.5 经典进程的同步问题602.6进程通信672.7线程(Threads)的基本概念752.8线程的实现79习题84第三章处理机调度与死锁853.1处理机调度的层次和调度算法的目标853.2作业与作业调度87
1
数字锁相环,用于使用红色火龙果锁定频率梳固件/软件允许使用此硬件来锁相频率梳。
更一般而言,它与硬件一起提供了一个数字控制盒,该数字控制盒可以支持双通道锁相环,包括输入rf信号的前端IQ检测。
因而,虽然此数字控制盒可用于锁相其他系统,但下面的讨论假定用户正在操作频率梳。
入门从“发布部分”()下载所需的文件:可以访问PythonGUI的完整源代码存储库;
b。
红火龙果的SD卡映像(red_pitaya_dpll_2017-05-31.zip)阅读并遵循“RedPitayaDPLL.pdf的说明和操作手册”文件。
软件版本所需的Python发行版是WinPython-64bit-3.7.2()。
FPGAVivado项目在Vivado2015.4中进行了编译,但是仅使用该软件就不需要安装Vivado。
附加信息可以从NIST数字控制箱的说明手册中获得更多信
2022/9/25 14:13:48 16.35MB Python
1
此安装包的下载无效日期至:2020.12.31安装包放在百度网盘,需要按下载的链接到百度网盘下载安装包文件。
SybaseASE这个仅仅是安装文件包,不包括EE及SBE的授权,如需要EE、SBE的授权请联系sybase,安装包的DE、XE用于学习是可以的,下载此包前,请先确认你的系统支持安装此ASE。
2017/6/15 20:53:56 104B sybase ase15.7 ase winx86
1
EjerciciosDesarrolloWeb客户端特马11.Worksheet12.Worksheet23.Worksheet34.Worksheet45.Worksheet56.Worksheet67.Worksheet7特马21.Worksheet12.Worksheet23.Worksheet34.Worksheet45.Worksheet66.Worksheet77.DebugExercise2特马31.Worksheet12.Worksheet23.Worksheet5特马41.Worksheet14.Worksheet45.Worksheet56.Worksheet6特马51.Worksheet12.Worksheet53.ColisionesBolas4
2020/1/20 2:47:51 1.43MB JavaScript
1
共 332 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡