adaboost演示demo(基于Matlab,学习算法包括决策树、神经网络、线性回归、在线贝叶斯分类器等),动态GUI显示学习进程、vote进程等
2021/2/4 3:11:53 13KB 机器学习
1
ROS视觉信息介绍该软件包定义了一组消息,以统一ROS中的计算机视觉和对象检测工作。
概述该软件包中的消息是为基于视觉的管道定义通用的向外接口。
这里的消息集旨在启用两种主要的管道类型:“纯”分类器,在给定单个传感器输入的情况下识别类概率检测器,可识别类的概率以及给定传感器输入的那些类的姿势类概率与ObjectHypothesis消息数组一起存储,该消息本质上是从整数ID到浮点得分和姿势的映射。
消息类型分别存在于2D(使用sensor_msgs/Image)和3D(使用sensor_msgs\PointCloud2)中。
为每个对象存储的元数据是特定于应用程序的,因而此程序包对元数据的约束很少。
每个可能的检测结果必须具有唯一的数字ID,以便可以在结果消息中明确,有效地识别它。
然后可以从数据库中查找对象元数据,例如名称,网格等。
唯一的其他要求是元数据数据库信息可
2019/6/26 9:50:57 17KB C++
1
【为什么学习机器学习算法?】人工智能是国家发展的战略,未来发展的必然趋势。
将来很多岗位终将被人工智能所代替,但人工智能人才只会越来越吃香。
中国人工智能人才缺口超过500万,人才供不应求。
要想掌握人工智能,机器学习是基础、是必经之路,也是极其重要的一步。
【课程简介】很多人认为机器学习难学,主要是因为其过于关注各种复杂数学公式的推导,从而忽略了公式的本质。
本课程通过对课件的精心编排,课程内容的不断打磨,重磅推出机器学习8大经典模型算法,对晦涩难懂的数学公式,通过图形展示其特点和本质,快速掌握机器学习模型的核心理论,将重点回归到机器学习算法本身。
本课程选取了机器学习经典的8大模型:线性回归、逻辑回归、决策树、贝叶斯分类器、支持向量机(SVM)、集成学习、聚类以及降维再也不用东拼西凑,一门课程真正掌握机器学习核心技术。
它们是人工智能必经之路,机器学习必学技术,企业面试必备技能。
?《深度学习与神经网络从原理到实践》课程现已上线,这使得人工智能学习路径愈加完备,地址:https://edu.csdn.net/course/detail/29539
2018/5/3 18:47:12 3.37MB 人工智能 机器学习 算法 数学 技术 回顾
1
OpenCV级联分类器训练与运用实战教程配套源代码.7z
2020/3/22 9:05:58 40.36MB 代码
1
近年来,手势识别的问题是由于难以利用多种计算方法和设备来感知人的手部运动。
因而,在本文中,我们解释了不同的算法来解释手势识别算法,因为它具有得到了很多关注。
我们可以使用手势在不触摸计算机屏幕的情况下与计算机进行交互,可以向计算机提供指令,因而在本文中,我们将介绍使用Kinect进行手势手势检测的方法。
我们正在使用手势识别的动态时间扭曲方法。
我们解释了一种有效的手势识别方法。
我们还使用了简单的K-NN分类器。
在这种方法中,我们使用了DTW(动态时间包装)对齐方式。
我们使用不同的算法和方法来解释有关手势手势识别结果的信息。
我们使用MPLCS算法来识别自由空中的手势并给出良好的结果,之后,我们还使用了MCC计算,该计算确定了重大运动的开始和结束目的,并忽略了未使用的信号。
因而,通过使用此算法,我们给出的手势重组结果要好于以前的所有结果。
2016/1/9 13:12:11 543KB DTW K-NN HCI MPLCS
1
SRC(SparseRepresentationClassifier)稀疏表示分类器SOMP(SimultaneousOrthogonalMatchingPursuit)同步正交婚配追踪稀疏表示分类器应用于高光谱图像分类的MATLAB代码实现。
此程序为论文仿真,论文题目为:HyperspectralImageClassificationUsingDictionary-BasedSparseRepresentation论文地址:http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5766028&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5766028其实只实现了论文里的第一种方法SOMP各个文件功能简介:isomp_Indiana.m主程序SamplesNormalize.m数据归一化findlabel2.m划分训练样本和测试样本SOMP.m求稀疏表示矩阵assig
2017/6/23 20:17:18 4.1MB matlab 分类 开发语言 数据挖掘
1
自然语言处理自然语言处理代码和正文。
nb_classifier包是朴素贝叶斯分类器的Java实现,适用于对短句进行分类。
NB_notes文件包含理论和实现的粗略概述。
2016/4/22 7:30:23 800KB Java
1
Qt编程开辟工控控件文件分类器
2017/11/1 10:56:03 627B Qt开发
1
这项工作提出了一种提取电流波形特征以识别家用电器的方法。
短时傅立叶变换(STFT)和内核PCA技术用于提取这些特征。
一旦定义了特征,分类器k-最近邻(kNN)、支持向量机(SVM)、线性判别分析(LDA)、随机森林(RF)和极限学习机(ELM)被用于设备(??或组合)电器)标识。
PS:ELM算法摘自http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm并顺应本工作
2016/3/9 1:10:18 6.61MB matlab
1
读者调用案例的时候,只要把案例中的数据换成自己需要处理的数据,即可实现自己想要的网络。
如果在实现过程中有任何疑问,可以随时在MATLAB中文论坛与作者交流,作者每天在线,有问必答。
该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。
该书另有31个配套的教学视频帮助读者更深入地了解神经网络。
本书可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
图书目录第1章P神经网络的数据分类--语音特征信号分类第2章BP神经网络的非线性系统建模--非线性函数拟合第3章遗传算法优化BP神经网络--非线性函数拟合第4章神经网络遗传算法函数极值寻优--非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计--公司财务预警建模第6章PID神经元网络解耦控制算法--多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN的数据预测--基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆--数字识别第10章离散Hopfield神经网络的分类--高校科研能力评价第11章连续Hopfield神经网络的优化--旅行商问题优化计算第12章SVM的数据分类预测--意大利葡萄酒种类识别第13章SVM的参数优化--如何更好的提升分类器的功能第14章SVM的回归预测分析--上证指数开盘指数预测第15章SVM的信息粒化时序回归预测--上证指数开盘指数变化趋势和变化空间预测第16章自组织竞争网络在模式分类中的应用--患者癌症发病预测第17章SOM神经网络的数据分类--柴油机故障诊断第18章Elman神经网络的数据预测--电力负荷预测模型研究第19章概率神经网络的分类预测--基于PNN的变压器故障诊断第20章神经网络变量筛选--基于BP的神经网络变量筛选第21章LVQ神经网络的分类--乳腺肿瘤诊断第22章LVQ神经网络的预测--人脸朝向识别第23章小波神经网络的时间序列预测--短时交通流量预测第24章模糊神经网络的预测算法--嘉陵江水质评价第25章广义神经网络的聚类算法--网络入侵聚类第26章粒子群优化算法的寻优算法--非线性函数极值寻优第27章遗传算法优化计算--建模自变量降维第28章基于灰色神经网络的预测算法研究--订单需求预测第29章基于Kohonen网络的聚类算法--网络入侵聚类第30章神经网络GUI的实现--基于GUI的神经网络拟合、模式识别、聚类
2021/6/17 23:08:54 61.64MB matlab
1
共 271 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡