在冷冲压模具设计方面,三维设计的优势是不言而喻的,随着计算机硬件性能的不断提升,冷冲压模具设计完全应用三维软件可以得到实现,这也是模具设计的发展趋势,而这个软件用来出图和设计是很好的
2025/1/8 8:54:07 73.71MB UG
1
Teamcenter二次开发资料用得到的拿去
2025/1/8 7:05:46 1.23MB 二次开发
1
查询海典用户明之后通过程序解密得到密码!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2025/1/6 5:32:35 181KB 海典
1
运用遗传算法,对天线的庞斑进行优化,得到最佳的线性阵列的分布
2025/1/4 17:14:23 4KB
1
利用LSB算法,完成的数字水印的嵌入和提取程序,VC++代码。
用VC6.0编译。
如果转化为vs会报错,需要自己修改调试。
这个程序也是从CSDN上得到的,会有其他不同名字但是同内容的下载源存在。
当初花了好多积分下的都是一样的东西心疼我的积分泪。
希望能给需要的朋友提供到帮助。
2025/1/4 10:31:42 1.04MB LSB算法 数字水印 提取 嵌入
1
提取有效的特征一直是笔迹鉴别的关键问题,针对传统Gabor滤波器特征提取方法存在的不足,充分利用Gabor滤波系数间的相关关系,提出一种融合全局特征和局部特征的特征提取方法。
该方法先通过字符笔画的方向梯度直方图(HOG)来优化Gabor滤波器的角度参数,再利用高斯马尔科夫随机场(GMRF)模型对Gabor滤波图像中的不同局部结构信息进行描述,最终得到笔迹图像的整体特征。
以楷书四大家的真迹样本和收集的英文手稿作为实验数据,采用最小加权欧式距离分类器对笔迹样本进行分类,通过五重交叉验证法分别得到97.6%和88.3%的正确分类率,表明该方法提取的特征具有较强的笔迹表征能力,是一种有效的笔迹特征提取方法。
2025/1/3 11:20:23 932KB 论文研究
1
在多种光源的45°/0°照明观测条件下,提出了一种测量金属涂料闪光效果的评价方法和开发了测量装置。
根据不同的色彩分布和闪光等级,选取39张金属漆色卡并构建了测试样本库。
对采集样本的多光谱图像进行校正,以符合不同光源下观察者的视觉响应。
通过设定与图像相关的阈值分离闪光点和背景,以BYKmac的测试数据为标准进行标定,得到了闪光面积、闪光强度和闪光等级算法。
在D65和A光源照明条件下,进一步比较实验装置对样本闪光等级的测量结果与视觉评价数据的相关性。
实验结果表明:在D65光源下,实验装置和人眼数据相关系数为0.848;在A光源下,实验装置和视觉数据的相关系数为0.851。
实验装置的测量效果优于现有的测量设备。
1
###HellaTAS-71版本标定流程解析####一、概述HellaTAS-71版本标定流程文档详细介绍了如何对HellaTAS-71系列的小总成进行标定,确保其性能达到最优状态。
整个过程分为初始化、静态标定与动态优化三个阶段。
本文将深入探讨这些阶段的具体步骤和技术细节。
####二、初始化阶段在初始化阶段,主要任务是完成传感器的基本配置和准备。
具体步骤包括:1.**连接传感器**:将待标定的最小总成(传感器)连接至测试台。
2.**供电**:对连接好的传感器进行上电处理。
3.**软件准备**:通过调用`APS.dll`文件来实现以下功能:-**创建芯片目标**:为传感器的芯片创建一个目标对象,以便后续操作。
-**初始化芯片目标**:进一步配置芯片目标,如设置芯片参数等。
-**创建传感器目标**:基于芯片目标创建传感器目标。
-**设置编程参数**:根据需要设置传感器的编程参数。
此外,文档还特别指出,对于ASIC的不同命名(如ASIC1、ASIC2等)以及PGI2代通讯端口参数的设置需参照帮助文件。
这一阶段的目标是确保所有硬件设备都已正确连接,并且软件环境已经准备好,为后续标定流程打下基础。
####三、静态标定阶段静态标定阶段是在不受扭状态下进行的,目的是对传感器的基本输出特性进行校准。
该阶段主要包括以下步骤:1.**读取OTP位**:使用`APS.dll`中的函数读取传感器内部已烧写的OTP位串,并将其保存以便追溯。
2.**写入位串**:将读取到的位串写回传感器。
3.**信号检测与调整**:-检测T1、T2信号的频率和占空比。
-通过公式计算T1ROC和T2ROC值,并进行相应的调整。
-公式示例:\(T1ROC=(T1-50)÷75×12×3072÷20\),其中\(T1\)为当前T1信号的占空比。
-根据计算结果调整T1、T2信号,以确保其处于合理的范围内。
4.**角度信号的静态标定**:-读取P、S信号的占空比,并通过特定算法计算角度偏移值。
-调整角度信号,使其满足静态标定的要求。
此阶段通过多次调整和检测,确保传感器在不受扭状态下能够提供准确的输出信号。
####四、动态优化阶段动态优化阶段则是在传感器受到外部旋转力的情况下进行,旨在进一步优化传感器的性能。
具体步骤如下:1.**驱动伺服电机**:在不受扭的状态下,顺时针和逆时针旋转传感器360度,并记录下各个信号的变化情况。
2.**数据处理与分析**:-对采集到的数据进行平均处理,得到T1_AV和T2_AV的平均值。
-基于平均值再次计算ROC值,进一步调整信号。
3.**信号优化**:通过综合前两次ROC值和动态采集的ROC值进行信号优化,确保传感器在动态条件下的性能也达到最优。
####五、总结通过对HellaTAS-71版本标定流程的详细分析,我们可以看出整个标定过程不仅涉及硬件的连接与调试,还需要软件层面的支持与配合。
从初始化到静态标定再到动态优化,每个阶段都有明确的目标和细致的操作指南,确保传感器能够在各种条件下都能发挥最佳性能。
这对于提高产品的可靠性和稳定性至关重要。
2024/12/31 17:07:02 639KB Hella
1
用C++写的元胞自动机NS模型,可以在程序中对规则修改,得到新的模型。
方面初学者的学习运用。
2024/12/31 14:14:46 874KB 元胞自动机 NS C++
1
本程序根据训练好的网络文件ANN.mat预测新的数据文件,得到均方误差,并画出预测数据和原数据的对比图。
2024/12/31 8:14:24 2KB BP神经网络
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡