人工智能基础视频教程零基础入门课程第十二章人工智能基础视频教程零基础入门课程,不需要编程基础即可学习,共15章,由于整体课程内容太大,无法一次传输,分章节上传。
第一章人工智能开发及远景引见(预科)第二章线性回归深入和代码实现第三章梯度下降和过拟合和归一化第四章逻辑回归详解和应用第五章分类器项目案例和神经网络算法第六章多分类、决策树分类、随机森林分类第七章分类评估、聚类第八章密度聚类、谱聚类第九章深度学习、TensorFlow安装和实现第十章TensorFlow深入、TensorBoard十一章DNN深度神经网络手写图片识别十二章TensorBoard可视化十三章卷积神经网络、CNN识别图片十四章卷积神经网络深入、AlexNet模型十五章Keras深度学习框架
2022/9/9 0:14:27 351.03MB 人工智能 机器学习 TensorFlow TensorBoard
1
Discusstheinfluenceofthefollowingfactors(plottheresultsandquantifythetesterrorandthetrainingerror):1.#oftrainingsamples
2022/9/7 15:26:15 3KB SOM 分类 代码
1
openCV所需求的分类器,一共21个,随便选择包括haarcascades和lbpcascades,其中有常用的人脸识别的haarcascade_frontalface_alt.xml和haarcascade_frontalface_alt2.xml
2022/9/7 2:17:02 1.39MB 21个随便选择
1
用opencv自带分类器完成视频中运动中的行人的检测,工程中包括两个分类器,haarcascade_upperbody.xml和haarcascade_fullbody.xml,是人体全身分类器和上半身分类器,分别识别全身和上半身。
2022/9/4 20:14:51 10.09MB opencv
1
植物分类是植物科学研究领域和农林业生产运营中重要的基础性工作,植物分类学是一项具有长远意义的基础性研究,其主要的分类依据是植物的外观特征,包括叶、花、枝干、树皮、果实等。
因此,花卉分类是植物分类学的重要部分,利用计算机进行花卉自动种类识别具有重要意义。
本文从常见的观赏花卉入手,探索了基于花朵数字图像对花卉进行种类识别的方法。
在己有研究的基础上,针对花朵的生长特点定义了颜色、纹理、形状等方面的特征,并使用分级SVM分类器对花卉图像进行了识别。
论文提出了分区域特征提取以及极坐标系下的灰度共生矩阵适于描述放射状生长的花朵纹理特征,对提高系统的识别准确率具有重要意义,此外,所设计的分级SVM分类器有效降低了分类器对样本种类数量的敏感性,克服了SVM分类器对大样本量识别准确率低的问题。
本文构建了基于数字图像的花卉种类识别系统,并用五十种花卉对系统进行了测试,达到了95.72%的识别准确率。
实验结果表明,本文所实现的花卉种类识别系统具有较高的识别准确率和稳定性。
2022/9/4 7:01:48 6.39MB 花卉分类 模式识别 特征提取 matlab
1
算法与处理方案它旨在在我知道或正在学习的文档和示例项目中创建基本文档和处理问题的方法。
可用标题仿射密码(线性加密)算法选择排序先验算法K-NN算法贝叶斯分类器算法背包算法每日移动平均二元搜寻最长公共子序列标记和扫描算法(垃圾收集方法)准备标题尝试方法-(土耳其文)
2022/9/3 10:37:21 44KB java machine-learning data-mining algorithm
1
压缩包中包括python脚本和一个PPT。
在UtralEdit中打开这两个脚本NBayes_lib.py和NBayes_test.py就可以查看脚本,然后运行NBayes_test.py这个脚本就可以得到测试集文本1的分类结果是0PPT详解了朴素贝叶斯算法的原理以及这个文本分类器的程序思想和运行结果详解,希望对你能够有协助,如果有任何问题,请留言!
2022/9/3 7:59:48 249KB Python 朴素贝叶斯
1
MNIST应该是最简单,也是最好的起始数据集,使用极为简单的分类器就可以达到不错的泛化准确率(何为泛化?即我们的模型对于没有进入训练集的判断能力,反应了模型能否正确或是鲁棒),实际上,基本上由图像各密集像素区的简单分布就可以达到分类手写数字识别的目的(特别是限制了手写范围,数字一般处于居中的位置的时候)。
此为其下载的脚本文件,此外,只需要一次下载后即可无须下载立刻使用,具体请看我的教程。
2019/9/19 21:57:15 1KB a'a'a'a'a'a'
1
近年来,手势识别的问题是由于难以利用多种计算方法和设备来感知人的手部运动。
因而,在本文中,我们解释了不同的算法来解释手势识别算法,因为它具有得到了很多关注。
我们可以使用手势在不触摸计算机屏幕的情况下与计算机进行交互,可以向计算机提供指令,因而在本文中,我们将介绍使用Kinect进行手势手势检测的方法。
我们正在使用手势识别的动态时间扭曲方法。
我们解释了一种有效的手势识别方法。
我们还使用了简单的K-NN分类器。
在这种方法中,我们使用了DTW(动态时间包装)对齐方式。
我们使用不同的算法和方法来解释有关手势手势识别结果的信息。
我们使用MPLCS算法来识别自由空中的手势并给出良好的结果,之后,我们还使用了MCC计算,该计算确定了重大运动的开始和结束目的,并忽略了未使用的信号。
因而,通过使用此算法,我们给出的手势重组结果要好于以前的所有结果。
2021/2/9 8:30:56 543KB DTW K-NN HCI MPLCS
1
本文实例讲述了Python实现的随机森林算法。
分享给大家供大家参考,具体如下:随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器。
算法的一些基本要点:*对大小为m的数据集进行样本量同样为m的有放回抽样;
*对K个特征进行随机抽样,构成特征的子集,样本量的确定方法可以有平方根、自然对数等;
*每棵树完全生成,不进行剪枝;
*每个样本的预测结果由每棵树的预测投票生成(回归的时候,即各棵树的叶节点的平均)著名的python机器学习包scikitlearn的文档对此算法有比较详尽的介绍:http://scikit-learn.org/stable/modules/en
2016/7/18 17:32:02 84KB dataframe prediction python
1
共 271 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡