DaphneKoller关于ProbabilisticGraphicalModels的最权威大作,内容详实深入,是各大名校机器学习和人工智能专业相应课程的指定教材AdaptiveComputationandMachineLearningThomasdietterich,EditorChristopherBishop,DavidHeckerman,MichaelJordan,andMichaelKearns,AssociateEditorsBioinformatics:TheMachinelearningApproach,PierreBaldiandSorenBrunakReinforcementLearning:AnIntroduction,RichardS.SuttonandAndrewG.BartoGraphicalmodelsforMachineLearningandDigitalCommunication,BrendanJ.FreyLearningingraphicalModels,MichaelI.JordanCausation,Prediction,andSearch,2nded,PeterSpirtes,ClarkGlymour,andRichardScheinesPrinciplesofDataMining,DavidHand,HeikkiMannila,andPadhraicSmythBioinformatics:TheMachineLearningApproach,2nded,PierreBaldiandSorenBrunakLearningKernelclassifiers:TheoryandAlgorithms,RalfHerbrichLearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyond,BernhardScholkopfandAlexanderJsmolaIntroductiontoMachineLearning,EthemAlpaydinGaussianProcessesforMachineLearning,CarlEdwardRasmussenandChristopherK.I.WilliamsSemi-SupervisedLearning,OlivierChapelle,BernhardScholkopf,andAlexanderZien,edsTheMinimumdescriptionLengthPrinciple,PeterDGrunwaldIntroductiontoStatisticalRelationalLearning,liseGetoorandBenTaskar,edsProbabilisticGraphicalModels:PrinciplesandTechniques,DaphneKollerandNirFriedmanProbabilisticGraphicalModelsPrinciplesandTechniquesDaphnekollerNirfriedmanThemitpressCambridge,MassachusettsLondon,England@2009MassachusettsInstituteofTechnologyAllrightsreserved.Nopartofthisbookmaybereproducedinanyformbyanyelectronicormechanicalmeans(includingphotocopying,recording,orinformationstorageandretrieval)withoutpermissioninwritingfromthepublisherForinformationaboutspecialquantitydiscounts,pleaseemailspecial_sales@mitpress.mit.eduThisbookwassetbytheauthorsinBlFX2EPrintedandboundintheunitedstatesofamericaLibraryofCongressCataloging-in-PublicationDataKoller,DaphneProbabilisticGraphicalModels:PrinciplesandTechniquesDaphneKollerandNirFriedmanpcm.-(Adaptivecomputationandmachinelearning)IncludesbibliographicalreferencesandindexisBn978-0-262-01319-2(hardcover:alk.paper1.Graphicalmodeling(Statistics)2.Bayesianstatisticaldecisiontheory--Graphicmethods.IKoller,Daphne.II.Friedman,NirQA279.5.K652010519.5’420285-dc222009008615109876543ToourfamiliesmyparentsDovandditzamyhusbanddanmydaughtersnatalieandmayaDKmyparentsNogaandGadmywifemychildrenroyandliorMEAsfarasthelawsofmathematicsrefertoreality,theyarenotcertain,asfarastheyarecertain,theydonotrefertorealityAlberteinstein1956Whenwetrytopickoutanythingbyitself,wefindthatitisboundfastbyathousandinvisiblecordsthatcannotbebroken,toeverythingintheuniverseJohnMuir,1869Theactualscienceoflogicisconversantatpresentonlywiththingseithercertain,impossible,orentirelydoubtful.Thereforethetruelogicforthisworldisthecalculusofprobabilities,whichtakesaccountofthemagnitudeoftheprobabilitywhichis,oroughttobe,inareasonableman'smindJamesClerkMaxwell,1850Thetheoryofprobabilitiesisatbottomnothingbutcommonsensereducedtocalculus;itenablesustoappreciatewithexactnessthatwhichaccuratemindsfeelwithasortofinstinctforwhichofttimestheyareunabletoaccount.PierreSimonLaplace,1819MisunderstandingofprobabilitymaybethegreatestofallimpedimentstoscientificliteracyStephenJayGouldContentsAcknowledgmentsListoffiguresListofalgorithmsListofboxesXXX1IntroductionL1Motivation11.2StructuredProbabilisticModels21.2.1ProbabilisticGraphicalModels31.2.2Representation,Inference,Learning51.3Overviewandroadmap61.3.1OverviewofChapters61.3.2Readersguide1.3.3ConnectiontoOtherDisciplines1.4Historicalnotes122Foundations2.1ProbabilityTheory2.1.1ProbabilityDistributions152.1.2BasicConceptsinProbability182.1.3RandomVariablesandJointDistributions192.1.4IndependenceandConditionalIndependence2:2.1.5QueryingaDistribution2.1.6ContinuousSpaces272.1.7ExpectationandVariance312.2Graphs342.2.1Nodesandedges342.2.2Subgraphs352.2.3Pathsandtrails36
2025/8/27 2:53:35 7.51MB PGM
1
LSTM-Neural-Network-for-Time-Series-Prediction-master.rar
2024/9/17 17:25:29 104KB lstm
1
ThisisasmalllibrarythatcantrainRestrictedBoltzmannMachines,andalsoDeepBeliefNetworksofstackedRBM's.TrainRBM's:%trainanRBMwithbinaryvisibleunitsand500binaryhiddenmodel=rbmBB(data,500);%visualizethelearnedweightsvisualize(model.W);Doclassification:model=rbmFit(data,500,labels);prediction=rbmPredict(model,testdata);TrainaDeepBeliefNetworkwith500,500,2000architectureforclassification:models=dbnFit(data,[5005002000],labels);prediction=dbnPredict(models,testdata);seeincludedexamplecodeformoreIcanbecontactedonandrej.karpathy@gmail.NOTE:ThiswasaclassprojectthatIworkedonfor1monthandthenabandoneddevelopmentforalmost4yearsago.Pleasedonotsendmespecificquestionsaboutissueswiththecodeorquestionsonhowtodosomething.Ionlyputthiscodeonlineinhopethatitcanbeusefultoothersbutcannotfullysupportit.Ifyouwouldlikepointerstomoreactivelymaintainedimplementations,havealookhere(https://github.com/rasmusbergpalm/DeepLearnToolbox)ormaybehere(https://github.com/lisa-lab/DeepLearningTutorials)Sorryandbestofluck!原文:http://code.google.com/p/matrbm/
2023/7/21 15:30:53 2.79MB RBM
1
kaggle比赛数据集:Porto_Seguro’s_Safe_Driver_Prediction_all.zipPorto_Seguro’s_Safe_Driver_Prediction_all.zip
2023/6/2 17:42:07 40.81MB kaggle 机器学习 Porto_Seguro
1
Loan_prediction:在DataHack上做预尝试-AnalyticsVidhya
2023/2/14 22:45:21 43KB JupyterNotebook
1
罗斯曼销售预测注意:我主要使用PLOTLY在此笔记本中可视化我的数据,但可打印的图未显示在github上。
Kaggle竞赛:Rossmann在欧洲7个国家/地区拥有3,000多家药店。
目前,Rossmann商店经理的任务是提前六周预测其每日销售额。
商店的销售受到许多因素的影响,包括促销,竞争,学校和州假日,季节性和地区性。
成千上万的个人经理根据他们的独特情况预测销售额,结果的准确性可能会大相径庭。
我们接受Rossmann的挑战,即要预测整个德国1,115家商店的6周日销售量。
可靠的销售预测使商店经理能够创建有效的员工时间表,从而提高生产力和动力。
通过协助Rossmann创建可靠的预测模型,我们将协助商店经理专注于对他们而言最重要的事情:他们的顾客和他们的团队!目录进口包资料准备2.1加载数据集2.2处理缺失的值2.2.1计算每个数据集中的缺失值2.2.2删
2022/9/7 13:04:30 1.27MB JupyterNotebook
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡