《模式分类》(原书第2版)的第1版《模式分类与场景分析》出版于1973年,是模式识别和场景分析领域奠基性的经曲名著。
在第2版中,除了保留了第1版的关于统计模式识别和结构模式识别的次要内容以外,读者将会发现新增了许多近25年来的新理论和新方法,其中包括神经网络、机器学习、数据挖掘、进化计算、不变量理论、隐马尔可夫模型、统计学习理论和支持向量机等。
作者还为未来25年的模式识别的发展指明了方向。
书中包含许多实例,各种不同方法的对比,丰富的图表,以及大量的课后习题和计算机练习。
2022/9/5 5:49:52 17.09MB 模式识别
1
智能交通系统利用先进的信息技术改善交通状况,使交通更畅通、更安全、更绿色。
车牌识别系统是的核心技术之一,它主要包括车牌定位、字符分割和字符识别三个核心模块。
随着安防视频步入高清时代,视频的分辨率越来越高,智能交通系统对车牌识别技术有了更高的要求:处理速度更快、环境适应性更强、识别率更高。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体引见了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。
车牌识别_matlab_模式识别(MATLAB代码,论文,图片素材)
2022/9/4 23:16:22 2.97MB MATLAB 图像处理 车牌识别 模式识别
1
特征降维是模式识别中重要的一步,从图像中提取的原始特征往往维度较高,需求对其降维处理。
基于AdaBoost的特征降维是具有良好的特征选择能力,其对每一维特征训练若分离器,根据分类效果调整权重,并最终选择具有分类信息的特征组合。
2022/9/4 4:30:24 6KB AdaBoost
1
手写数字的识别是模式识别及机器学习的一个重要应用,应用范围非常广泛。
本文提出一种基于决策树算法的手写数字识别方法,该方法通过提取基于密度的特征,通过训练得到一个决策树分类模型,进而进行手写数字的识别。
实验证明该方法能够快速无效的进行手写数字的识别。
2022/9/3 0:25:35 292KB 机器学习 决策树
1
现代模式识别,内容详细完整,一同学习进步。





2016/8/13 7:33:44 57.85MB 模式识别 人工智能
1
朱元国教授的“智能优化算法”课件,包括模仿退火算法、人工神经网络、遗传算法、蚁群等。
模式识别、机器学习等都是用的上的。
1
随着计算机技术和模式识别等相关技术的飞速发展,使运用当今先进技术来研制安全监测系统成为可能,人脸识别是安全监测系统中身份识别的一种最方便、最直接的方法。
传统的人脸图像识别系统是由大规模或超大规模集成电路来完成的,图像采集依赖于较大型设备,速度比较慢,实时性较差,在小范围内使用价格比较昂贵。
随着数字信号处理器DSP的飞速发展,它以其高速、准确的功能为图像获取带来了新的途径,而且用硬件来实现人脸图像识别价格比较低廉。
DSP(digitalsignalprocessor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。
其工作原理是接收模拟信号,转换为0或1的数字信号。
再对数字信号进行修改、删
1
《模式识别与机器学习》,原英文名为《PatternRecognitionandMachineLearning》,也就是鼎鼎大名的PRML。
适用于机器学习、统计学、计算机科学、信号处理、计算机视觉、数据发掘、生物信息学等课程。
2015/9/8 17:56:14 14.73MB
1
2021年整理,国科大模式识别与机器学习课程
1
读者调用案例的时候,只要把案例中的数据换成自己需要处理的数据,即可实现自己想要的网络。
如果在实现过程中有任何疑问,可以随时在MATLAB中文论坛与作者交流,作者每天在线,有问必答。
该书共有30个MATLAB神经网络的案例(含可运行程序),包括BP、RBF、SVM、SOM、Hopfield、LVQ、Elman、小波等神经网络;还包含PSO(粒子群)、灰色神经网络、模糊网络、概率神经网络、遗传算法优化等内容。
该书另有31个配套的教学视频帮助读者更深入地了解神经网络。
本书可作为本科毕业设计、研究生项目设计、博士低年级课题设计参考书籍,同时对广大科研人员也有很高的参考价值。
图书目录第1章P神经网络的数据分类--语音特征信号分类第2章BP神经网络的非线性系统建模--非线性函数拟合第3章遗传算法优化BP神经网络--非线性函数拟合第4章神经网络遗传算法函数极值寻优--非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计--公司财务预警建模第6章PID神经元网络解耦控制算法--多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN的数据预测--基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆--数字识别第10章离散Hopfield神经网络的分类--高校科研能力评价第11章连续Hopfield神经网络的优化--旅行商问题优化计算第12章SVM的数据分类预测--意大利葡萄酒种类识别第13章SVM的参数优化--如何更好的提升分类器的功能第14章SVM的回归预测分析--上证指数开盘指数预测第15章SVM的信息粒化时序回归预测--上证指数开盘指数变化趋势和变化空间预测第16章自组织竞争网络在模式分类中的应用--患者癌症发病预测第17章SOM神经网络的数据分类--柴油机故障诊断第18章Elman神经网络的数据预测--电力负荷预测模型研究第19章概率神经网络的分类预测--基于PNN的变压器故障诊断第20章神经网络变量筛选--基于BP的神经网络变量筛选第21章LVQ神经网络的分类--乳腺肿瘤诊断第22章LVQ神经网络的预测--人脸朝向识别第23章小波神经网络的时间序列预测--短时交通流量预测第24章模糊神经网络的预测算法--嘉陵江水质评价第25章广义神经网络的聚类算法--网络入侵聚类第26章粒子群优化算法的寻优算法--非线性函数极值寻优第27章遗传算法优化计算--建模自变量降维第28章基于灰色神经网络的预测算法研究--订单需求预测第29章基于Kohonen网络的聚类算法--网络入侵聚类第30章神经网络GUI的实现--基于GUI的神经网络拟合、模式识别、聚类
2021/6/17 23:08:54 61.64MB matlab
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡