光学薄膜是现代光学和光电系统重要的组成部分,在光通信、光学显示、激光加工、激光核聚变等高科技及产业领域已经成为核心元器件,其技术突破常常成为现代光学及光电系统加速发展的主因。
光学薄膜的技术性能和可靠性,直接影响到应用系统的性能、可靠性及成本。
如图1是光通讯技术中使用窄带滤光片调制不同的通讯通道示意图[1]。
图2是激光核聚变系统中大量使用到的薄膜元器件[2]。
随着行业的不断发展,精密光学系统对光学薄膜的光谱控制能力和精度要求越来越高,而消费电子对光学薄膜器件的需求更强调超大的量产规模和普通大众的易用和舒适性。
2023/8/20 20:22:26 1.67MB 论文
1
本程序是用来控制步进电机的正反转的实验程序,并通过了验证。
2023/8/20 0:27:42 35KB 步进电机 控制程序
1
纯人工翻译中文版本,STM32CubeMX用户手册中文版,STM32CubeMX用户手册中文版UM1718-翻译版.菜鸟到高手,显得有些霸气哈,不过的确如此,官方带给我们一个比较实用的stm32的工具。
这个工具就是STM32CubeMX,昨天玩freeRTOS的时候就提到过。
说到freeRTOS,这里就多说两句。
全局变量,在任务间相互访问的时候也是需要临界保护的,不然可能会出现奇怪的问题。
不过我们可以关掉时间片调度,任务间可以访问全局变量而不用加保护(不等于菜鸟可以随意代码)。
关闭了时间片调度,只有发生vTaskDelay的时候才会上下文切换。
只要代码合理访问全局变量可以不加保护的。
因此代码也不是可以任意书写的,关于freeRTOS的问题,多看看源码,一切都会有答案。
源码较少,这里就不过多介绍。
关闭时间片不是网上说的configUSE_TIME_SLICING这个宏定义,老鸟发现这个宏压根没用哈,嘿嘿。
阅读源码可以找到相关宏配置。
不过不建议关闭,时间片调度也可以让一个任务在执行一定时间后切换到其他就绪任务去执行。
如果有freeRTOS相关问题,可以留言给我。
废话说多了点哈,继续我们的STM32CubeMX。
下面我们来讲讲这个工具的作用,讲完后,可以自己下载一个试试,挺简单不多介绍。
到官网下载STM32CubeMX,并安装。
1:芯片选型打开STM32CubeMX,我们点击newproject,我们就可以进行芯片选型,如果你下载了打开了这个工具,是不是很惊讶,stm32的所有产品型号都在里面,而且左下提供了资源勾选,比如你要以太网支持,勾选以太网选项,所有的支持以太网的stm32芯片才会被显示,旁边还有个max的栏目指示了芯片最多支持该功能的个数。
空白的一般默认只有一个。
下图是我勾选以太网的截图。
上图不仅提供了芯片,还提供了价格,是否在售,封装,存储,频率等一些列信息。
除了cpu资源可以选型外,上面还提供了脚多少,存储大小等非常灵活的选型方式。
我们选择其中一个的单片机后。
右上部分给我们提供了完美的支持。
第一个选项提供了改cpu的特性,我们可以大概的了解选中的cpu资源。
第二个选项提供该cpu框图,截图图片太大,这里就不截图了。
第三个选项提供了cpu文档,这个文档非常多也非常全面,基本不用在网上东找西找了,主要给硬件工程师用。
第四个选项提供了cpu的相关设计资源,软件编程文档,给软件工程师用,非常全面,包括网上很少用到的文档资料,比如系统移植相关的底层资料(堆栈,指令,汇编)。
第五个选项提供了芯片购买途径,这个每个人自己选择吧。
第六个选项开始工程,芯片选好了,就可以开始工程。
2:设定芯片。
芯片选好后,可以开始设定芯片。
这就是软件工程师的好帮手呀。
比如我要以太网功能,勾选上以太网即可,他就会自动分配出芯片对应的以太网接口。
如下图:上面我选了标准的MII接口。
很多人可能就不理解,你勾了个以太网,咋报错了。
老鸟告诉你为啥变红了,stm32有个复杂的功能就是io口复用,勾选mii后分配的io口和spi2以及iis口重合了,所以这个工具非常智能的提示了出来,非常神奇吧。
告诉你他们不能使用了。
还有些变黄了,说明他们可以选择性使用,真是太方便了,省去了查资料慢慢找io的痛苦。
比如我们还要给它个外部时钟。
我们勾选时钟即可,响应的时钟脚就会分配出来。
如果要将某个脚设置成输入输出那就更简单了,鼠标点选对应的io口选择对应功能即可,比如我单击PA6,它的所有功能可以轻松选择:软件使用比较简单,不过多解释,一看就明白,设置完芯片功能后,我们就设定系统各项功能时钟。
选择时钟设置页面(clockconfiguration)时钟轻松设定,如下图,简单明了,不过多解释了:时钟配置完成后,可以切换到configuration选项对功能进一步设定,里面参数都是常用的功能,设置较为简单。
就不多举例了,比如网络功能里面设置mac地址等。
3:生产初始化代码经过上面的图形化设定,我们可以直接生产初始化代码。
省去我们查阅资料慢慢配置的的环节,时间更多的利用在应用层设计。
点击project下面的生成代码选项。
输入工程名(根据你项目需要起名),这里我就随便输入一个名字。
设定好相关参数。
点击ok即可。
顺便说下,这个工具是配带教程的,我这里只是告诉大家有这样个工具可以加速开发,具体设置参考官方教程。
生成后打开文件夹内容如下:上图的inc和src文件夹里面是生成的主要代码,其他几个文件夹里面的东西,大家可以根据自己需要选择。
src文件夹文件如下:打开熟悉的ma
2023/8/19 21:31:32 11.41MB stm32 仿真
1
400G正在加速数据中心的发展。
随着运营商将数据中心升级到更高的数据速率,格局已从100G转移。
本文探讨400G光器件在数据中心的市场机遇、挑战以及趋势。
2023/8/17 22:48:22 188KB 400G 数据中心
1
018年1月4日,JannHorn等安全研究者披露了"Meltdown"(CVE-2017-5754)和"Spectre"(CVE-2017-5753&CVE-2017-5715)两组CPU特性漏洞。
相关漏洞利用了芯片硬件层面执行加速机制的实现缺陷实现侧信道攻击,可以间接通过CPU缓存读取系统内存数据,其直接危害是将可能造成CPU运作机制上的信息泄露,低权级的攻击者可以通过漏洞来远程泄露用户信息或本地泄露更高权级的内存信息。
笔者对此进行深入研究
2023/8/17 1:57:49 1.86MB 系统结构 CPU 漏洞
1
为什么要对网络进行压缩和加速呢?最实际的原因在于当前存储条件和硬件的计算速度无法满足复杂网络的需求,当然也许十几年或更远的将来,这些都将不是问题,那么神经网络的压缩和加速是否仍有研究的必要呢?答案是肯定的,我认为对网络压缩和加速的最根本原因在于对高效率模型的追求,当前很多复杂网络中的很多参数是冗余的,对实际模型结果没什么贡献,我们怎么能容忍这些无意义的参数竟然和有意义的参数享受相同的“待遇”——相同的存储空间和计算时间。
2023/8/15 19:30:22 1.14MB 机器学习 卷积神经网络
1
C#仿360加速球http://blog.csdn.net/yuanwofei/article/details/16339825
2023/8/13 15:09:01 446KB C#加速球
1
变速齿轮几乎可以改变所有在Windows平台下的游戏的速度,可以改变时间相关的程序的速度,例如我们播放视频、观看网页、打开flash等等集游变速齿轮加速器核心加速技术,变速齿轮,驱动加速器优点与一身!多种驱动级加速方案,实现多种不同的加速感觉,使您的系统和游戏战斗力提示N倍。
一对多的进程级加速,可对目标进程进行完美加速,从而不会影响系统和其他程序
2023/8/6 0:51:09 3.66MB 变速齿轮 变速
1
嵌入式课设做的设计,用的STM32F103ZET6,使用按键控制步进电机状态,包括加速减速停止正反转等,带LCD显示。
2023/8/4 16:25:02 3.95MB STM32 步进电机 控制 课设
1
《计算机组成与设计:硬件/软件接口(原书第5版)》是计算机组成与设计的经典畅销教材,第5版经过全面更新,关注后PC时代发生在计算机体系结构领域的革命性变革——从单核处理器到多核微处理器,从串行到并行。
本书特别关注移动计算和云计算,通过平板电脑、云体系结构以及ARM(移动计算设备)和x86(云计算)体系结构来探索和揭示这场技术变革。
  与前几版一样,本书采用MIPS处理器讲解计算机硬件技术、汇编语言、计算机算术、流水线、存储器层次结构以及I/O等基本功能。
  《计算机组成与设计:硬件/软件接口(原书第5版)》特点  更新例题、练习题和参考资料,重点关注移动计算和云计算这两个新领域。
  涵盖从串行计算到并行计算的革命性变革,第6章专门介绍并行处理器,每章中都涉及并行硬件和软件的相关主题。
  全书采用Intel Core i7、ARM Cortex-A8和NVIDIA Fermi GPU作为实例。
  增加“运行更快”这一新实例,说明正确理解硬件技术的重要性,它能使软件性能提高200倍。
  讨论并强调计算机体系结构的“8个伟大思想”——通过并行提高性能、通过流水线提高性能、通过预测提高性能、面向摩尔定律的设计、存储器层次、使用抽象简化设计、加速大概率事件和通过冗余提高可靠性。
1
共 404 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡