1、利用历史数据进行风电功率预测,数据的质量对预测准确度有很大的影响,此外,了解风速、功率在不同时段的变化特性,采取针对性、差异化的参数配置,有助于提高预测算法的效率和模型对具体数据的顺应性。
本课题主要采用K均值聚类算法对风速和功率数据进行聚类,剔除不合理的数据,再通过BP神经网络实现短期风电功率预测。
2、BP神经网络、kmeans聚类算法。
3、matlab仿真;
1
Greenplum开辟规范和语法,Oracle和GP语法差异
2020/4/15 10:44:26 108KB oracle 数据库 database greenplum
1
视觉导航是智能采棉机器人的基本技术之一。
棉田组成复杂,存在遮挡和照明,难以准确识别出犁沟,从而提取出导航线。
提出了一种基于水平样条分割的野外导航路径提取方法。
首先,通过OTSU阈值算法对RGBcolor.space中的彩色图像进行预处理,以分割犁沟的二值图像。
棉田图像成分分为四类:犁沟(成分包括土地,枯萎的叶子等)。

),棉纤维,棉的其他器官和外部区域或阻塞物。
通过利用HSV模型的色相和值的显着差异,作者将阈值分为两个步骤。
首先,他们在S通道中分割棉绒,然后在棉线区域之外的区域中在V.通道中分割犁沟。
另外,需要形状学处理以滤出小的噪声区域。
其次,水平样条用于分割二值图像。
作者检测水平样条中的连通区域,并合并由棉毛或附近大连通区域中的亮点引起的孤立的小区域,从而获得犁沟的连通区域。
第三,根据相邻导航线候选之间的距离较小的原理,以图像底部的中心为起点,并从连通域的中点开始依次选择候选点。
最后,作者对连接域的数量进行计数,并计算连接域边界线的参数变化,以确保机器人是否到达了野外或遇到障碍物。
如果没有异常,则使用minimum.squares方法由导航点拟合导航路径。
2017/7/15 20:54:57 896KB otton-Picking Robot Horizontal Spline
1
TELEMAC系统是一套适用于模仿河流、河口和海岸二、三维水动力、泥沙、水质和生态等问题的模型系统,由法国国家水力学与环境实验室开发,基于有限单元或有限体积数值求解。
TELEMAC-2D作为TELEMAC系统中的一个二维模块,可以用于研究水流、风暴潮、波浪、泥沙和污染物输移等。
模型功能包括:考虑非线性影响的波浪传播、底摩阻、科氏力影响、气压和风、紊流、河流入流、水平温盐密度梯度、干湿网格判断等。
其网格划分为非结构化的三角形网格,考虑到近岸水流、地形梯度的差异,对于重要区域可进行局部加密,对复杂地形的适用性比较强。
2017/9/15 14:25:53 596KB telemac
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡