统计自然语言处理第二版宗成庆pdf是一本经过第二次更新的统计自然语言方面的教材。
自然语言作为人类思想情感最基本,最直接,最方便的表达工具,无时无刻不充斥在人类社会的各个角落。
小编推荐的这本统计自然语言处理全面介绍了统计自然语言处理的基本概念、理论方法和新研究进展,内容包括形式语言与自动机及其在自然语言处理中的应用、语言模型、隐马尔可夫模型、语料库技术、汉语自动分词与词性标注、句法分析、词义消歧、篇章分析、统计机器翻译、语音翻译、文本分类、信息检索与问答系统、自动文摘和信息抽取、口语信息处理与人机对话系统等,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。
2024/2/2 9:26:17 16.87MB 自然语言处理 nlp
1
AES的S盒可以用扩展的欧几里德和费马定理来写,这里我采用费马定理。
要注意的是S盒的求逆过程是在加瓦罗域下进行的,所以里面的所有乘法、除法、加法、减法都是在加瓦罗域下进行。
2024/2/2 5:36:08 8KB AES S盒 费马定理
1
DifferentialEquationsandLinearAlgebra(4th)英文无水印原版pdf第4版pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开本资源转载自网络,如有侵权,请联系上传者或csdn删除查看此书详细信息请在美国亚马逊官网搜索此书EditorialDirector,Mathematics:ChristinehoagEditor-in-Chief:DeirdreLynchAcquisitionsEditor:WilliamHoffmaProjectTeamLead:ChristinaleProjectmanager:LaurenMorseEditorialAssistant:JenniferSnyderProgramTeamLead:KarenwernholmProgramManagerDaniellesimbajonCoverandillustrationDesign:StudioMontageProgramDesignLead:BethPaquinProductMarketingManagerClaireKozarProductMarketingCoordiator:BrookesmithFieldMarketingManager:EvanStCyrSeniorAuthorSupport/TechnologySpecialist:JoevetereSeniorProcurementSpecialist:CarolMelvilleInteriorDesign,ProductionManagement,AnswerArt,andCompositioneNergizerAptara,LtdCoverImage:LighttrailsonmodernbuildingbackgroundinShanghai,China-hxdyl/123RFCopyrightO2017,2011,2005PearsonEducation,Inc.oritsaffiliates.AllRightsReserved.PrintedintheUnitedStatesofAmerica.Thispublicationisprotectedbycopyright,andpermissionshouldbeobtainedfromthepublisherpriortoanyprohibitedreproduction,storageinaretrievalsystem,ortransmissioninanyformorbyanymeans,electronic,mechanical,photocopyingrecording,orotherwise.Forinformationregardingpermissions,requestformsandtheappropriatecontactswithinthePearsonEducationGlobalRights&Permissionsdepartmentpleasevisitwww.pearsoned.com/permissions/PEARSONandALWAYSLEARNINGareexclusivetrademarksintheU.s.and/orothercountriesownedbyPearsonEducation,Inc.oritsaffiliatesUnlessotherwiseindicatedherein,anythird-partytrademarksthatmayappearinthisworkarethepropertyoftheirrespectiveowandanyreferencestothird-partytrademarks,logosorothertradedressarefordemonstrativeordescriptivepurposesonly.SuchofsuchmarksoranyrelationshipbetweentheownerandPearsonEducation,Inc.oritsaffiliates,authors,licenseesordistributortreferencesarenotintendedtoimplyanysponsorship,endorsement,authorization,orpromotionofPearsonsproductsbytheownersLibraryofCongressCataloging-in-PublicationDataGoode.StephenwDifferentialequationsandlinearalgebra/StephenW.GoodeandScottA.AnninCaliforniastateUniversity,Fullerton.-4theditionpagescmIncludesindexISBN978-0-321-96467-0—ISBN0-32196467-51.Differentialequations.2.Algebras,Linear.I.Annin,Scott.II.TitleQA371.G6442015515’.35-dc23201400601512345678910V031-1918171615PEARSONISBN10:0-321-96467-5www.pearsonhighered.comISBN13:978-0-321-96467-0ContentsPrefacevii1First-OrderDifferentialEquations1.1DifferentialEquationsEverywhere11.2BasicIdeasandTerminology131.3TheGeometryofFirst-OrderDifferentialEquations231.4SeparableDifferentialEquations341.5SomeSimplePopulationModels451.6First-OrderLinearDifferentialEquations531.7ModelingProblemsUsingFirst-OrderLinearDifferentialEquations61.8Changeofvariables711.9ExactDifferentialEquations821.10Numericalsolutiontofirst-OrderDifferentialEquations931.11SomeHigher-OrderDifferentialEquations1011.12ChapterReview1062MatricesandSystemsofLinearEquations1142.1Matrices:Definitionsandnotation1152.2MatrixAlgebra1222.3TerminologyforSystemsofLinearEquations13824R。
w-EchelonMatricesandElementaryR。
wOperations1462.5Gaussianelimination1562.6TheInverseofasquarematrix1682.7ElementaryMatricesandtheLUFactorization1792.8TheInvertiblematrixtheoremi1882.9ChapterReview1903Determinants1963.1TheDefinitionofthedeterminant1963.2PropertiesofDeterminants2093.3CofactorExpansions2223.4SummaryofDeterminants2353.5ChapterReview242iyContents4VectorSpaces2464.1Vectorsinrn2484.2DefinitionofaVectorSpace2524.3Subspaces2634.4SpanningSets2744.5LinearDependenceandLinearIndependence2844.6Basesanddimension2984.7Changeofbasis3114.8RowSpaceandColumnSpace3194.9TheRank-NullityTheorem3254.10InvertibleMatrixTheoremll3314.11ChapterReview3325InnerProductSpaces3395.1DefinitionofanInnerproductspace3405.2OrthogonalSetsofvectorsandorthogonalProjections3525.3Thegram-Schmidtprocess3625.4LeastSquaresApproximation3665.5ChapterReview3766LinearTransformations3796.1Definitionofalineartransformation3806.2Transformationsofr23916.3TheKernelandrangeofalineartransformation3976.4AdditionalPropertiesofLinearTransformations4076.5Thematrixofalineartransformation4196.6Chaiterreview4287EigenvaluesandEigenvectors4337.1TheEigenvalue/EigenvectorProblem4347.2GeneralResultsforEigenvaluesandEigenvectors4467.3Diagonalization4547.4AnIntroductiontotheMatrixExponentialFunction4627.5OrthogonalDiagonalizationandQuadraticforms4667.6Jordancanonicalforms4757.7Chapterreview4888LinearDifferentialEquationsofOrdern4938.1GeneralTheoryforLinearDifferentialEquations4958.2ConstantCoefficientHomogeneousLinearDifferentialEquations5058.3ThemethodofundeterminedcoefficientsAnnihilators5158.4Complex-ValuedTrialSolutions5268.5OscillationsofaMechanicalSystem529Contentsv8.6RLCCircuits5428.7TheVariationofparametersmethod5478.8ADifferentialEquationwithNonconstantCoefficients5578.9Reductionoforder5688.10ChapterReview5739SystemsofDifferentialEquations5809.1First-OrderLinearSystems5829.2VectorFormulation5889.3GeneralResultsforfirst-OrderLinearDifferentialystems5939.4VectorDifferentialEquations:NondefectiveCoefficientMatrix5999.5VectorDifferentialEquations:DefectiveCoefficientMatrix6089.6Variation-of-ParametersforLinearSystems6209.7SomeApplicationsofLinearSystemsofDifferentialEquations6259.8MatrixExponentialFunctionandSystemsofDifferentialEquations6359.9ThePhasePlaneforLinearAutonomousSystems6439.10NonlinearSystems6559.11ChapterReview66310TheLaplaceTransformandSomeElementaryApplications67010.1DefinitionoftheLaplaceTransform67010.2TheExistenceofthelaplacetransformandtheInversetransform67610.3PeriodicFunctionsandtheLaplacetransform68210.4ThetransformofderivativesandsolutionofInitial-Valueproblems68510.5TheFirstShiftingTheorem69010.6TheUnitStepFunction69510.7TheSecondShiftingTheorem69910.8ImpulsiveDrivingTerms:TheDiracDeltaFunction70610.9TheConvolutionIntegral71110.10ChapterReview71711SeriesSolutionstoLinearDifferentiaEquations72211.1AReviewofpowerseries72311.2SeriesSolutionsaboutanOrdinaryPoint73111.3TheLegendreEquation74111.4SeriesSolutionsaboutaRegularSingularPoint75011.5Frobeniustheory75911.6Bessel'sEquationofOrderp77311.7Chapterreview785ViContentsAReviewofComplexNumbers791BReviewofPartialFractions797CReviewofIntegrationTechniques804DLinearlyIndependentSolutionstox2y+xp(x)y+g(x)y=0811Answerstoodd-NumberedExercises814Index849S.W.GoodededicatesthisbooktomeganandtobiS.A.annindedicatesthisbooktoarthurandJuliannthebestparentsanyonecouldaskforPretraceLikethefirstthreeeditionsofDifferentialEquationsandLinearalgebra,thisfourtheditionisintendedforasophomorelevelcoursethatcoversmaterialinbothdifferentialequationsandlinearalgebra.Inwritingthistextwehaveendeavoredtodevelopthestudentsappreciationforthepowerofthegeneralvectorspaceframeworkinformulatingandsolvinglinearproblems.Thematerialisaccessibletoscienceandengineeringstu-dentswhohavecompletedthreesemestersofcalculusandwhobringthematurityofthatsuccesswiththemtothiscourseThistextiswrittenaswewouldnaturallyteachblendinganabundanceofexamplesandillustrations,butnotattheexpenseofadeliberateandrigoroustreatment.MostresultsareprovenindetailHowever,manyofthesecanbeskippedinfavorofamoreproblem-solvingorientedapproachdependingonthereader'sobjectives.Somereadersmayliketoincorporatesomeformoftechnology(computeralgebrasystem(CAS)orgraphingcalculator)andthereareseveralinstancesinthetextwherethepoweroftechnologyisillustratedusingtheCasMaple.Furthermore,manyexercisesetshaveproblemsthatrequiresomeformoftechnologyfortheirsolutionTheseproblemsaredesignatedwithaoIndevelopingthefourtheditionwehaveoncemorekeptmaximumflexibilityofthematerialinmind.Insodoing,thetextcaneffectivelyaccommodatethedifferentemphasesthatcanbeplacedinacombineddifferentialequationsandlinearalgebracourse,thevaryingbackgroundsofstudentswhoenrollinthistypeofcourse,andthefactthatdifferentinstitutionshavedifferentcreditvaluesforsuchacourse.Thewholetextcanbecoveredinafivecredit-hourcourse.Forcourseswithalowercredit-hourvalue,someselectivitywillhavetobeexercised.Forexample,much(orall)ofChapterImaybeomittedsincemoststudentswillhaveseenmanyofthesedifferentialequationstopicsinanearliercalculuscourse,andtheremainderofthetextdoesnotdependonthetechniquesintroducedinthischapter.Alternatively,whileoneofthemajorgoalsofthetextistointerweavethematerialondifferentialequationswiththetoolsfromlinearalgebrainasymbioticrelationshipasmuchaspossible,thecorematerialonlinearalgebraisgiveninChapters2-7sothatitispossibletousethisbookforacoursethatfocusessolelyonthelinearalgebrapresentedinthesesixchapters.ThematerialondifferentialequationsiscontainedprimarilyinChapters1and8-1l,andreaderswhohavealreadytakenafirstcourseinlinearalgebracanchoosetoproceeddirectlytothesechaptersThereareothermeansofeliminatingsectionstoreducetheamountofmaterialtobecoveredinacourse.Section2.7containsmaterialthatisnotrequiredelsewhereinthetext,Chapter3canbecondensedtoasinglesection(Section3.4)forreadersneedingonlyacursoryoverviewofdeterminants,andSections4.7,5.4,andthelatersectionsofChapters6and7couldallbereservedforasecondcourseinlinearalgebra.InChapter8Sections8.4,8.8,and8.9canbeomitted,and,dependingonthegoalsofthecourse,Sections8.5and8.6couldeitherbede-emphasizedoromittedcompletelySimilarremarksapplytoSections9.7-9.10.AtCaliforniaStateUniversity,Fullertonwehaveafourcredit-hourcourseforsophomoresthatisbasedaroundthematerialinChapters1-9viiiPrefaceMajorChangesintheFourthEditionSeveralsectionsofthetexthavebeenmodifiedtoimprovetheclarityofthepresentationandtoprovidenewexamplesthatreflectinsightfulillustrationswehaveusedinourowncoursesatCaliforniaStateUniversity,Fullerton.OthersignificantchangeswithinthetextarelistedbeleOW1.ThechapteronvectorspacesinthepreviouseditionhasbeensplitintotwochaptersChapters4and5)inthepresentedition,inordertofocusseparateattentiononvectorspacesandinnerproductspaces.Theshorterlengthofthesetwochaptersisalsointendedtomakeeachofthemlessdaunting2.Thechapteroninnerproductspaces(Chapter5)includesanewsectionprovidinganapplicationoflinearalgebratothesubjectofleastsquaresapproximation3.Thechapteronlineartransformationsinthepreviouseditionhasbeensplitintotwochapters(Chapters6and7)inthepresentedition.Chapter6isfocusedonlineartransformations,whileChapter7placesdirectemphasisonthetheoryofeigenvaluesandeigenvectors.Oncemore,readersshouldfindtheshorterchapterscoveringthesetopicsmoreapproachableandfocused4.Mostexercisesetshavebeenenlargedorrearranged.Over3,000problemsarenowcontainedwithinthetext,andmorethan600concept-orientedtrue/falseitemsarealsoincludedinthetext5.Everychapterofthebookincludesoneormoreoptionalprojectsthatallowformorein-depthstudyandapplicationofthetopicsfoundinthetext6.ThebackofthebooknowincludestheanswertoeveryTrue-FalsereviewitemcontainedinthetextAcknowledgmentsWewouldliketoacknowledgethethoughtfulinputfromthefollowingreviewersofthefourthedition:JameyBassofCityCollegeofSanFrancisco,TamarFriedmannofUniversityofrochester,andlinghaiZhangofLehighUniversityAlloftheircommentswereconsideredcarefullyinthepreparationofthetextS.A.Annin:Ioncemorethankmyparents,ArthurandJuliannAnnin,fortheirloveandencouragementinallofmyprofessionalendeavors.Ialsogratefullyacknowledgethemanystudentswhohavetakenthiscoursewithmeovertheyearsand,insodoinghaveenhancedmyloveforthesetopicsanddeeplyenrichedmycareerasaprofessorFirst-OrderDifferentiaEquations1.1DifferentialEquationsEverywhereadifferentialequationisanyequationthatinvolvesoneormorederivativesofanunknownfunction.Forexample(1.1.1dxds(S-1)(1.1.2)aredifferentialequations.Inthedifferentialequation(1.1.1)theunknownfunctionordependentvariableisy,andxistheindependentvariable;inthedifferentialequation(1.1.2)thedependentandindependentvariablesareSandt,respectively.Differentialequationssuchas(1.1.1)and(1.1.)inwhichtheunknownfunctiondependsonlyonasingleindependentvariablearecalledordinarydifferentialequations.Bycontrast,thedifferentialequationLaplace'sequation)0involvespartialderivativesoftheunknownfunctionu(x,y)oftwoindependentvariablesxandy.SuchdifferentialequationsarecalledpartialdifferentialequationsOnewayinwhichdifferentialequationscanbecharacterizedisbytheorderofthehighestderivativethatoccursinthedifferentialequationThisnumberiscalledtheorderofthedifferentialequation.Thus,(l1.1)hasordertwo,whereas(1.1.2)isafirst-orderdifferentialequation1
2024/1/26 14:10:04 16.51MB Differential Equations Linear Algebra
1
马奎塔
2024/1/24 3:07:06 2KB
1
马氏决策的好书,可用于Internet流量分析建模,无线网络资源分配建模
2024/1/23 2:05:48 6.05MB 马氏决策
1
ModernOperatingSystemsGlobalEdition(4th)英文无水印原版pdf第4版pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开本资源转载自网络,如有侵权,请联系上传者或csdn删除查看此书详细信息请在美国亚马逊官网搜索此书
2024/1/19 17:35:51 6.29MB Modern Operating Systems Global
1
结网pdf电子书,做最挑剔的用户腾讯公司首席执行官马化腾
2024/1/17 10:20:15 12.67MB 结网
1
马士兵老师mybatis相关学习笔记
2024/1/16 6:55:01 28.14MB 马士兵 mybatis java
1
马尔可夫决策过程概述该存储库运行3种强化算法:策略迭代,值迭代和Q学习,以解决2个MDP问题:悬崖行走和20X20冻湖网格,并比较它们的性能。
运行步骤需要Python3.6使用pip从Requirements.txt安装需求使用python3运行以下命令以创建数据和图形文件:pythonrun_experiment.py-全部pythonrun_experiment.py--plot获得的结果有关获得的结果的更多信息,请参考Analysis.pdf。
悬崖行走问题问题结果冻湖网格问题问题结果
2024/1/11 9:14:12 3.63MB Python
1
目录:第一章绪论1·1生物视觉通路简介1·2Marr的计算视觉理论框架1·3本书各章内容简介1·4计算机视觉的现状与阅读本书需注意的问题思考题参考文献第二章边缘检测2·1边缘检测与微分滤波器2·2边缘检测与正则化方法2·3多尺度滤波器与过零点定理2·4最优边缘检测滤波器2·5边缘检测快速算法2·6图像低层次处理的其他问题思考题参考文献第三章射影几何与几何元素表达3·1仿射变换与射影变换的几何表达3·2仿射坐标系与射影坐标系3·3仿射变换与射影变换的代数表达3·4不变量3·5由对应点求射影变换3·6点3·7指向和方向3·8平面直线及点线对偶关系3·9空间平面及点面对偶关系3·10空间直线3·11二次曲线与二次曲面思考题参考文献第四章摄像机定标4·1线性模型摄像机定标4·2非线性模型摄像机定标4·3立体视觉摄像机定标4·4机器人手眼定标4·5摄像机自定标技术思考题参考文献第五章立体视觉5·1立体视觉与三维重建5·2极线约束5·3对应基元匹配5·4射影几何意义下的三维重建思考题参考文献第六章运动与不确定性表达6·1欧氏平面上的刚体运动6·2欧氏空间中的刚体运动6·3不确定性的描述6·4不确定性的运算6·5不确定性运算的几个例子6·6三维直线段的不确定性6·7不确定性的显示思考题参考文献第七章基于光流场的运动分析7·1光流场和运动场7·2光流的约束方程7·3微分技术7·4其他方法7·5基于光流场的定性运动解释思考题参考文献第八章长序列运动图像特征跟踪8·1引论8·2参数估计理论初步8·3特征运动模型8·4特征跟踪的阐述8·5匹配8·6实际应用中需要考虑的问题思考题参考文献第九章基于二维特征对应的运动分析9·1极线方程和本质矩阵9·2基于点匹配的运动计算9·3图像是一个空间平面的投影时的运动计算9·4基于直线匹配的运动计算9·5基本矩阵的估计思考题参考文献第十章基于三维特征对应的运动分析10·1由三维点匹配估计运动10·2不需显式匹配的方法10·3从三维直线匹配估计运动10·4从平面匹配估计运动10·5二维-三维的物体定位思考题参考文献第十一章由图像灰度恢复三维物体形状11·1辐射度学与光度学11·2光照模型11·3由多幅图像恢复三维物体形状11·4由单幅图像恢复三维物体形状思考题参考文献第十二章建模与识别12·1CAD系统中的三维模型表达12·2曲线与曲面的表达12·3三维世界的多层次模型12·4由二维图像建模12·5识别的一般原则——问题与策略12·6特征关系图匹配12·7“假设检验”识别方法思考题参考文献第十三章距离图像获取与处理13·1距离传感器13·2数据预处理13·3深度图分割思考题参考文献第十四章计算机视觉系统体系结构讨论与展望14·1计算机视觉系统的基本体系结构14·2视觉系统体系结构讨论14·3主动视觉14·4计算机视觉的应用展望参考文献附录A实验数据及参考结构A·1图像的格式A·2摄像机定标A·3立体视觉A·4基于光流场的运动分析A·5长序列运动图像特征跟踪A·6基于二维特征对应的运动分析A·7基于三维特征对应的运动分析
2023/12/23 18:13:56 13.62MB 计算机视觉 马颂德 张正友
1
共 510 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡