首页
熊猫办公下载
文件下载
根据地址查询经纬度
登录 / 注册
一级分类:
安全技术
存储
操作系统
服务器应用
行业
课程资源
开发技术
考试认证
数据库
网络技术
信息化
移动开发
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
二级分类:
STC隐写原理.pptx
STC隐写原理,利用Viterbi算法求解最优隐写位置的原理及规则。
2023/7/20 5:38:32
343KB
STC编码
隐写
Viterbi算法
1
segment_string:将字符串分割为最可能的实词片段-源码
segment_stringsegment_string.py是为类项目构建的。
使用维特比算法获取输入字符串,并从输入中输出最可能的细分列表来自Google研究的语料库在找到viterbi_segment从AIMAPythongithub上取(用我自己的更改)发现进行以下更改:-变量名称更改-概率是从函数调用的,而不是通过参数发送的-打印段而不前往
2023/3/8 21:46:50
2.15MB
Python
1
基于序列检验和Viterbi的检测前跟踪算法
针对弱小目标的检测跟踪问题,提出了一种基于序列检验和Viterbi的检测前跟踪算法;将雷达扫描区域进行划分后,在方位-距离-多普勒平面内联合处理回波信号,为了搜集目标驻留时间内的散射能量,可以通过Viterbi算法搜索连续扫描时允许的目标转移状态,最后通过序列检测做出判决;序列检验可以解决目标检测过程中时延较大的问题,Viterbi算法用来获取检测统计量及目标的轨迹;仿真结果表明,该算法对高速运动的目标具有良好的检测与跟踪功能。
2023/3/7 9:33:32
192KB
序列检验
1
数据挖掘18大算法实现以及其他相关经典DM算法
数据挖掘算法算法目录18大DM算法包名 目录名 算法名AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法Classification DataMining_CART CART-分类回归树算法Classification DataMining_ID3 ID3-决策树分类算法Classification DataMining_KNN KNN-k最近邻算法工具类Classification DataMining_NaiveBayes NaiveBayes-朴素贝叶斯算法Clustering DataMining_BIRCH BIRCH-层次聚类算法Clustering DataMining_KMeans KMeans-K均值算法GraphMining DataMining_GSpan GSpan-频繁子图挖掘算法IntegratedMining DataMining_CBA CBA-基于关联规则的分类算法LinkMining DataMining_HITS HITS-链接分析算法LinkMining DataMining_PageRank PageRank-网页重要性/排名算法RoughSets DataMining_RoughSets RoughSets-粗糙集属性约简算法SequentialPatterns DataMining_GSP GSP-序列模式分析算法SequentialPatterns DataMining_PrefixSpan PrefixSpan-序列模式分析算法StatisticalLearning DataMining_EM EM-期望最大化算法StatisticalLearning DataMining_SVM SVM-支持向量机算法其他经典DM算法包名 目录名 算法名Others DataMining_ACO ACO-蚁群算法Others DataMining_BayesNetwork BayesNetwork-贝叶斯网络算法Others DataMining_CABDDCC CABDDCC-基于连通图的分裂聚类算法Others DataMining_Chameleon Chameleon-两阶段合并聚类算法Others DataMining_DBSCAN DBSCAN-基于密度的聚类算法Others DataMining_GA GA-遗传算法Others DataMining_GA_Maze GA_Maze-遗传算法在走迷宫游戏中的应用算法Others DataMining_KDTree KDTree-k维空间关键数据检索算法工具类Others DataMining_MSApriori MSApriori-基于多支持度的Apriori算法Others DataMining_RandomForest RandomForest-随机森林算法Others DataMining_TAN TAN-树型朴素贝叶斯算法Others DataMining_Viterbi Viterbi-维特比算法18大经典DM算法18大数据挖掘的经典算法以及代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面,后面都是相应算法的博文链接,希望能够协助大家学。
目前追加了其他的一些经典的DM算法,在others的包中涉及聚类,分类,图算法,搜索算等等,没有具体分类。
C4.5C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。
ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。
详细介绍链接CARTCART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法,详细介绍链接KNNK最近邻算法。
给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。
近的点的权重大点,远的点自然就小点。
详细介绍链接NaiveBayes朴素贝叶斯算法。
朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导
2023/3/5 1:58:33
220KB
数据挖掘
18大
算法
DM
1
Viterbi算法c/c++实现
算法处理的问题:通过观察序列来猜测背后最有可能的隐藏序列。
viterbi译码算法是一种卷积码的解码算法。
优点不说了。
缺点就是随着约束长度的增加算法的复杂度增加很快。
2023/2/13 8:25:46
3KB
Viterbi
1
模式识别第4版(中文版+英文版+PPT源码)
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46
95.69MB
模式识别
1
模式识别第4版(中文版+英文版+PPT源码)
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46
95.69MB
模式识别
1
咬尾卷积viterbi译码器-python完成
基于python的咬尾卷积viterbi译码器完成其中包括CRC校验
2021/10/2 7:10:43
17KB
viterbi
1
HMM及其算法(前向,Viterbi,Baum-Welch)
在PPT中简单引见了HMM,对其针对的三个主要工作及其算法进行了描述与说明,分别是评估——前向算法,解码——Viterbi算法,训练——Baum-Welch算法,希望可以帮到大家。
2022/9/5 16:14:05
567KB
HMM
前向
Viterbi
Baum-Welch
1
前向算法+后向算法+Viterbi算法实践
针对于盒子球模型的前向算法+后向算法+Viterbi算法python完成
2015/6/10 4:26:37
125KB
后向算法
前向算法
维特比算法
1
共 21 条记录
首页
上一页
下一页
尾页
钉钉无人值守自动打卡脚本 永不迟到的神器 安卓和苹果教程
New!
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03
15KB
钉钉
钉钉打卡
个人信息
点我去登录or注册
|
微信登录
一言
热门下载
双系统双频伪距单点定位程序
Docker构建tomcat镜像jdk1.8+tomcat9.zip
飘逸传世引擎源代码
几何画板课件350套.zip
R9390系列BIOS修改和风扇调速工具
ABAQUS金属非稳态和稳态切削过程的模拟分析_张东进.pdf
新升级版TP5商城小程序源码+公众号版+h5一整套源码V3.zip
CNS2_CN_VW_P0095D_0332.7z
vue项目demo(asp.netmvc5+vue2.5)
高光谱和LiDAR多模态遥感图像分类数据集
ENVI去云补丁Haze_tool文件及其使用说明和安装方法
HTML5+CSS3中文参考手册(3手册)chm版中文参考手册打包
拾荒者扫描器.zip
Android控件GridView之仿支付宝钱包首页带有分割线的GridView九宫格的完满实现
爱普生LQ-690K清零调整程序附使用图解
最新下载
基于des前后端加密解密
SSD论文翻译
基于jsp物流中心仓储信息管理系统
VB通过GPIB与仪器通讯
wancms免费版手游平台源码手游发布平台
BabeLuaForVS2017.zip
以更好的方式引导用户为应用打分
Confluence6版本破解及插件破解
增值税发票税控开票软件数据接口规范V3.0
Linux文件管理系统代码注释
JAVA串口助手接收数据并解析数据存入MySQL数据库中
cygwin1.75.part29.rar完全版(总1.6G34个包)
顶尖LS2X条码秤开发.rar
tesseract-ocr/tessdata语言包
android仿日历翻页特效,数字翻转变换
其他资源
gdeltevent数据字段说明V2.docx
iis3dwb_STdC.zip
stare-images.rar
银行储蓄系统c++
layui封装项目
操作零碎复习题操作零碎复习题
LCD12864中文资料带汉字库
具有万亿边缘的时空图的无效分区和查询处理
MSP430MicrocontrollerBasics
几款简单,大气,常用的答辩,比赛,论文ppt模板
数字集成电路——课程设计报告
西门子SIMATICNET快速入门手册
元胞自效果的Matlab代码.m
公务员考试网站源码
中国科学技术大学研究生课程机器学习课件PPT
弯管机工作模拟软件
C#挪用当地摄像头去读取二维码大概条形码
arcgis创建镶嵌数据集并发布影像服务
使用AndroidStudio开发简易进制转换计算器
quartus15.1primestandard破解器