OSEK,是指德国的汽车电子类开放系统和对应接口标准(opensystemsandthecorrespondinginterfacesforautomotiveelectronics),而VDX则是汽车分布式执行标准(vehicledistributedexecutive),后者最初是由法国独自发起的,后来加入了OSEK团体。
两者的名字都反映出OSEK/VDX的目的是为汽车电子制定标准化接口。
该标准完全独立,对目标系统只限制了少量的条件。
这样,就可以应用一些简单的处理器替代那些昂贵的解决方案,来控制任务执行,并不需要任何附加条件。
事实上,在此基础上,也可以合理使用一些更复杂的CPU,于是该标准便对任何可能的目标平台都没有了限制。
标准定义了三个组件来构成OSEK/VDX标准:实时的操作系统(OSEKOS),通讯子系统(OSEK-COM)和网络管理系统(OSEK-NM)。
这样定义的一个好处是方便了各个组件版本的定义,这已在实际应用中得到了体现,例如:现在OSEK-COM(3.0.2)和OSEK-NM(2.5.2)的版本就与OSEK-OS(2.2.1)的版本不同。
图1给出了OSEK/VDX的基本结构和各组件间的关系。
2024/6/2 3:18:52 702KB OSEK NM 2.5.3
1
HR2000高分辨率微型光纤光谱仪是一种小型模块化的光谱仪,可提供光学分辨率为0.035nm(FWHM)。
HR2000特别适用于激光和LEDS等波
2024/5/13 13:41:17 293KB LabVIEW
1
根据光学玻璃元件超精密抛光加工技术的需求,研究了磁性复合流体(MCF)抛光液成分配比及制备,并在此基础上结合不同抛光工艺参数实验分析BK7光学玻璃的抛光质量。
研究不同成分配比下的磁性复合抛光头的物理表现,在MCF各成分质量分数为铁粉55%、水30%、氧化铈12%以及α-纤维素3%时,获得形状及稳定性最佳的MCF抛光头;
采用该比例配制的MCF在自行研制的MCF抛光设备上对BK7玻璃进行定点抛光,对MCF抛光头正压力及BK7玻璃抛光后的表面粗糙度进行研究。
通过实验数据分析发现抛光正压力随主轴转速的增大而增大,随磁铁偏心距的增大而减小,经过50min定点抛光,表面粗糙度从10.2nm降低到6.7
2024/3/22 6:09:08 9.76MB 光学制造 磁性复合 抛光 正压力
1
本文报道了一种在铜片上采用原位生长法制备的Cu2O-AgSERS基底的方法。
通过优化制备Cu2O的退火温度和时间及制备Cu2O-Ag的AgNO3浓度和反应时间,获得的原位生长Cu2O-Ag基底具有良好的拉曼增强效果。
通过对基底的表征及仿真模拟,发现基底表面形成的凹型空间和均匀密布的AgNPs提供了丰富的SERS“热点”,且该基底具有较好的疏水性,因此SERS活性显著。
该基底对多种违禁药物都有很好的灵敏度,拉曼强度与药物浓度具有良好的定量关系,孔雀石绿、恩诺沙星和呋喃西林的检测线分别为4.9nM、0.72μM和0.12μM。
本文提出的基底制备方法具有工艺简单、成本低且SERS活性高等优点,在环境监测领域具有较好的应用前景。
1
本文描述了稀有气体卤化物准分子介质中光强的弛豫振荡,使用的高压混合气体由稀有气体.卤素和相应地缓冲(稀有)气体所组成.借助氩离子激光束(514.5nm)探测激活介质,测得三原子准分子Xe_2Cl的弛豫振荡周期值为4nm左右.系统用相对论强电子束进行泵浦.在对准分子介质的光学增益观测中,发现了光场强度弛豫振荡的有趣现象.这种振荡表明了光强与被激励介质间的相互作用.本文首次描述了准分子介质中的这种振荡,其物理学机制可以认为是:光强增加导致受激发射速率增加使得粒子数反转下降,这就引起光学增益减小,而光学增益的减小反过来又导致光强的减弱.我们假设,高压混合气体被电子束泵浦后形成均匀加宽的四能级系统,而
2023/12/4 4:25:29 3.84MB 弛豫振荡 准分子介 稀有气体 微扰法
1
AUTOSAR_NM_V1.0
2023/11/9 0:14:17 355KB 网络管理
1
高光谱解混数据集(Samson),具有156个通道的Matlab格式数据,原始数据有952x952像素。
每个像素记录在156个通道上,覆盖401nm至889nm的波长。
光谱分辨率高达3.13nm。
由于原始图像太大,这在计算成本方面非常昂贵,因此使用95×95像素的区域。
它从原始图像中的第(252,332)像素开始。
此数据不会被空白通道或严重噪声通道降级。
具体而言,该图像中有三个目标,分别是“#1土壤”,“#2树”和“#3水”。
2023/10/29 12:43:07 3.42MB 高光谱解混数
1
猫眼电影所有城市信息,包括名字,拼音,城市id,如:{"id":150,"nm":"阿拉善盟","py":"alashanmeng"},{"id":151,"nm":"鞍山","py":"anshan"},{"id":197,"nm":"安庆","py":"anqing"},{"id":238,"nm":"安阳","py":"anyang"},
2023/10/17 23:46:52 128KB 电影城市信息 猫眼电影 JSON数据
1
提出了一种用于40Gb/s单信道光纤通信系统中的动态色度色散(CD)补偿技术。
采用2×2光开关,色散补偿光纤(DCF)等器件构成可调节色度色散补偿器;提取中心频率为12GHz的窄带电功率信号作为反馈信号控制可调节色度色散补偿器,提取的窄带电功率值随系统中的累积色度色散值的增大而减小。
实验证明,整个补偿系统的最长响应时间为0.7s;补偿范围和补偿精度分别为81.55ps/nm和5.28ps/nm,通过增加光开关的数量和缩短每段色散补偿光纤的长度可以进一步提高补偿范围和精度。
通过对比补偿前后系统的眼图可以看出:该系统能有效地补偿40Gb/s光纤通信系统中动态变化的色度色散。
2023/9/28 11:02:19 763KB 光纤通信 动态色散 色散补偿
1
在当今光纤通信技术迅猛发展的进程中,既要对光纤性能不断改善,又要对光子器件性能不断改善。
在现阶段,主要是在光波工作的单模光纤,其损耗在1.3μm约为0.37dB/km,在1.55μm约为0.2dB/km,常规单模光纤的色散,在1.3μm近于零,在1.55μm约为17ps/km·nm。
长距离光纤通信系统既要通达最长的中继距离,又要载荷最大的码速容量,因而倾向于利用波长1.55μm。
如能制成色散移位光纤,1.55μm就兼有最低损耗和零色散的波长,长途系统将获得最好效果。
但如只有常规单模光纤,则必须利用单频激光管减少发射频谱,从而减少1.55μm光纤色散的影响。
在长途光纤系统中
2023/9/21 21:45:35 4MB
1
共 40 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡