报告对各种Boosting集成学习模型进行系统测试Boosting集成学习模型将多个弱学习器串行结合,能够很好地兼顾模型的偏差和方差,该类模型在最近几年获得了长足的发展,主要包括AdaBoost、GBDT、XGBoost。
本篇报告我们将对这三种Boosting集成学习模型进行系统性的测试,并分析它们应用于多因子选股的异同,希望对本领域的投资者产生有实意图义的参考价值。
2020/5/17 15:54:58 2.72MB AI Boosting
1
在Adaboost算法的基础上,提出了一种改进的Boosting方法来解决分类问题。
此方法将示例的类标签预测为分类器集合的加权多数投票。
每个分类器是通过将给定的弱学习者应用于子样本(大小小于原始训练集的子样本)而获得的,该子样本是根据原始训练集上保持的概率分布从原始训练集中得出的。
在Adaboost中提出的重新加权方案中引入了一个参数,以更新分配给训练示例的概率,从而使算法比Adaboost愈加准确。
在UCI资料库中可获得的合成数据集和一些实际数据集上的实验结果表明,该方法提高了Adaboost的预测精度,执行速度以及对分类噪声的鲁棒性。
此外,通过kappa误差图研究了集成分类器的多样性准确性模式。
2016/5/11 17:46:49 688KB ensemble classifier; weak learner;
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡