使用K-最近邻算法对三类样本进行分类的matlab代码
2025/6/7 22:34:57 14KB KNN
1
对两个一维高斯分布产生的无先验知识样本进行分类最终得到样本属于哪个高斯分布的概率和各分布的均值方差
2025/5/31 22:14:25 1021B EM算法 混合高斯分布
1
功能:可用于图像识别样本获取。
要求:安装chrome浏览器,获取对应chromedriver并放置与程序同一目录使用方法:输入关键词,输入爬取数量,获取图片并自动创建文件夹保存内容。
2025/5/29 16:31:07 35.62MB 爬虫
1
用FAMALE.TXT和MALE.TXT的数据作为本次实验使用的样本集,利用K-L变换对该样本集进行变换,与过去用Fisher线性判别方法或其它方法得到的分类面进行比较。
有详细的文档和完整的代码
2025/5/21 2:12:58 128KB K-L变换 特征提取
1
###DM365开发板资料详解:SequentialJPEG解码器功能及限制####概述本资料针对DM365开发板上的SequentialJPEG解码器进行了详细介绍。
该解码器支持多种输入格式,并提供了多种配置选项,旨在满足不同应用场景的需求。
此文档将深入探讨该解码器的主要特点、支持的功能以及一些限制条件。
####主要特点-**eXpressDSP™DigitalMedia(XDM1.0)**:该解码器遵循eXpressDSP™DigitalMedia1.0规范,确保与平台的兼容性。
-**旋转和支持**:支持图像旋转(90°、180°、270°),并支持解码区域选择。
-**接口**:支持IIMGDEC1接口和IRES接口单独使用,但不支持同时使用。
-**环形缓冲区**:采用环形缓冲区配置位流缓冲区,以减少缓冲区大小需求。
-**操作系统**:已在MontaVista®Linux®5.0上验证。
-**多实例支持**:支持多个JPEG解码器实例,且可与其他DM365代码一起运行。
####功能支持-**基线顺序过程**:支持基线顺序处理,但存在以下限制:-不支持非交错扫描。
-仅支持1和3组件。
-Huffman表和量化表对于U和V组件必须相同。
-最多支持四个AC和DCDCT系数表(每个两组)。
-**输出格式**:-YUV4:2:2交错数据作为输出。
-YUV4:2:0半平面(NV12格式,即Y平面,CbCr交错)数据作为输出。
-**输入格式**:-支持YUV4:2:0、YUV4:2:2、YUV4:4:4、交错YUV4:2:2以及灰度图(8x8像素MCU)。
-支持YUV4:2:0、YUV4:2:2和YUV4:4:4的平面格式。
-**量化表格**:支持8位量化表格。
-**帧级解码**:支持帧级别的图像解码。
-**分辨率**:支持最高可达(水平MCU大小*1024)*(垂直MCU大小*1024)像素的图像解码。
理论上最大值为64M像素,但实际测试仅达到64M像素以下。
####限制条件-**扩展DCT基于的过程**:不支持扩展DCT基于的过程。
-**无损处理**:不支持无损处理。
-**分层处理**:不支持分层处理。
-**渐进扫描**:不支持渐进扫描。
-**特定输入格式**:不支持YUV4:1:1输入格式或灰度图(16x16像素MCU)。
-**解码图像宽度**:不支持小于64像素的解码图像宽度。
-**解码图像高度**:不支持小于32像素的解码图像高度。
-**源图像**:不支持12位每样本的源图像。
-**内存限制**:如果解码器内存和I/O缓冲区需求超过DDR内存可用性,则可能需要使用环形缓冲区和切片模式解码来处理更高分辨率的图像。
####结论该SequentialJPEG解码器为DM365开发板提供了一种高效、灵活的图像解码解决方案。
它不仅支持多种输入格式,还具有强大的配置选项,使得开发者可以根据具体应用场景进行定制化设置。
然而,需要注意的是,该解码器在某些方面存在一定的限制,开发者在使用时需根据这些限制进行适当的调整。
通过合理利用该解码器的特点和功能,可以有效提高基于DM365开发板的IP摄像机等网络监控应用的性能。
2025/5/20 8:20:50 79KB DM365 files
1
用opencv的traincascade.bat来训练人头,内有人头正样本和负样本,还有归一化尺寸的matlab代码,不需要建立工程,只需简单设置参数就可以进行训练,同时内txt文档还有使用的过程,使训练更简答
2025/5/19 20:31:17 20.47MB OPENCV MATLAB TRAINING HOG
1
MNIST数据集,MNIST训练样本,MNIST测试样本,txt格式
2025/5/9 8:30:52 111KB MNIST txt 书写体数字
1
在利用Adaboost算法识别物体之前,需要用ObjectMarker标定正样本进行正样本数据的采集。
早先别人上传的ObjectMarker不可用,我作了些修改上传,希望对大家有帮助。
运行前把正样本图片放在rawdata文件夹下,运行时按空格标定正样本区域,按回车继续下一张图。
2025/5/8 18:21:43 1.01MB 样本 采集 OpenCV Adaboost
1
本文基于传统的LPC倒谱特征和KC复杂性特征建立了一个说话人确认系统,采用了YOHOspeakerverifiea:ion数据库,Enroll阶段:采用238说话人4个session每个Sessi。
n有10个语音样本数据,Verify阶段:采用138说话人10个Session每个session有4个语音样本数据,训练模板和测试该说话人确认系统,取得了较好的说话人确认效果。
2025/5/3 18:07:09 3.12MB LCP
1
代码分为read_can_use.m和main_can_ues.m先运行read_can_use.m读取图片的像素值,使用奇异值分解的方法得到对应的特征。
程序预设了只读取前5个人的人脸图片,可以自己改成最多15个人。
然后运行main_can_use.m,程序会输出112323,每个数字代表一张图片最有可能的识别类别(就是人的编号)。
对每个人的11张图片,取前7张训练网络,后4张测试网络,取前5个人进行实验。
所以共有35个训练样本,20个测试样本。
比如输出的结果是111122123333…..,因为每4个数字是属于同一个人的,前四个都是1则都预测正确,第二组的4个数字2212中的那个1就是预测错误(本来是2预测成了1)。
由于参数的随机初始化,不保证每次的结果都相同。
2025/4/25 5:01:34 1.39MB 神经网络 人脸识别
1
共 539 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡