DeepLearningtutorial(5)CNN卷积神经网络应用于人脸识别(详细流程+代码实现)
2024/10/23 10:12:50 14.64MB DeepLearning
1
MATLAB工具包DEEPLEARNINGTOOLBOX(一)DeepLearningToolbox™提供了一个用于通过算法、预训练模型和应用程序来设计和实现深度神经网络的框架。
我们可以使用卷积神经网络(ConvNet、CNN)和长短期记忆(LSTM)网络对图像、时序和文本数据执行分类和回归。
2024/10/23 7:57:32 216.9MB 深度学习
1
基于VGG19的图像风格迁移,如果没有vgg-19文件运行utils代码是会下载。
在styles文件夹中选择更改要迁移的图,包含了风格图片,内容图片替换成自己要进行操作的图片即可。
是可以直接运行跑通的。
有疑问的话可以留言询问。
2024/10/10 11:45:39 225KB 图像风格迁移
1
在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。
"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(LightDetectionandRanging)数据,以实现更精确的图像分类。
高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。
这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。
通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。
LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。
LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。
此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。
这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。
每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。
数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。
多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。
将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。
在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。
通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。
对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。
"高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。
通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024/10/9 21:43:17 185.02MB 数据集
1
基于卷积神经网络的手写数字识别,工具使用Google的人工智能TensorFlow库,识别准确率高,代码使用python3.0以上版本
2024/10/5 4:20:30 5KB 数字识别 CNN
1
基于FPGA的卷积神经网络加速器
2024/10/2 13:47:03 3.11MB 卷积神经网络
1
利用卷积神经网络对轴承故障数据进行分类,通过构造简单的卷积神经网络,达到良好的识别分类效果
2024/9/26 9:52:50 5KB 深度学习 卷积神经网络
1
研究深度学习和卷积神经网络的同学都知道Mnist这个数据库,它是一个手写数字的图像数据集,可以用来作为网络训练的基准测试数据库。
原版数据集是以特定格式存储的四个文件,包括乱序排列的60000个训练样本与10000个测试样本,以及它们对应的标签向量。
现将其中的图片从原文件中读取出来,重新转化为png格式,并将测试集和训练集分别按0~9进行分类,并存放在各自的子文件夹中,以便各位同学进行科研与实验之用。
原数据集下载地址为:http://yann.lecun.com/exdb/mnist/
1
目的:使用CNN卷积神经网络实现语音识别步骤:(1)预处理。
首尾端的静音切除,降低对后续步骤造成的干扰,然后进行声音分帧,把声音切开成帧,,各帧之间一般是有交叠。
(2)特征提取。
运用的算法为倒谱系数(MFCC),把每一帧波形变成一个包含声音信息的多维向量;
(3)RNN模型训练。
有了特征,就可以使用TensorFlow完成模型的建立和训练了。
(4)验证模型。
目标:对相应的声音数据进行分类,例如数据的是数数的数据,能够输出对应的数字。
2024/9/7 10:11:28 5KB cnn 语音识别
1
CNN卷积神经网络tensorflow代码,使用MNIST数据集,安装好python和TensorFlow可直接运行
1
共 170 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡