使用MATLAB实现了统计学习方法隐马尔可夫模型前向后向算法,并针对课后习题1进行了实例验证,感兴趣的同学可以一起交流。
2024/6/5 17:57:02 638B 隐马尔可夫
1
看大小就知道很全啦查看地址https://blog.csdn.net/qq_43333395/article/details/98508424目录:数据结构:1.RMQ(区间最值,区间出现最大次数,求区间gcd)2.二维RMQ求区间最大值(二维区间极值)3.线段树模板(模板为区间加法)(线段树染色)(区间最小值)4.线性基(求异或第k大)5.主席树(静态求区间第k小)(区间中小于k的数量和小于k的总和)(区间中第一个大于或等于k的值)6.权值线段树(求逆序对)7.动态主席树(主席树+树状数组)(区间第k大带修改)8.树上启发式合并(查询子树的优化)9,树状数组模板(求区间异或和,求逆序对)扩展10.区间不重复数字的和(树状数组)11.求k维空间中离所给点最近的m个点,并按顺序输出(KD树)12.LCA(两个节点的公共父节点)动态规划:1.LIS(最长上升子序列)2.有依赖的背包(附属关系)3.最长公共子序列(LCS)4.树形DP5.状压DP-斯坦纳树6.背包7.dp[i]=min(dp[i+1]…dp[i+k]),multset博弈:1.NIM博弈(n堆每次最少取一个)2.威佐夫博弈(两堆每次取至少一个或一起取一样的)3.约瑟夫环4.斐波那契博弈(取的数依赖于对手刚才取的数)5.sg函数数论:1.数论素数检验:普通素数判别线性筛二次筛法求素数米勒拉宾素数检验2.拉格朗日乘子法(求有等式约束条件的极值)3.裂项(多项式分子分母拆分)4.扩展欧几里得(ax+by=c)5.勾股数(直角三角形三边长)6.斯特林公式(n越大越准确,求n!)7.牛顿迭代法(求一元多次方程一个解)8.同余定理(a≡b(modm))9.线性求所有逆元的方法求(1~pmodp的逆元)10.中国剩余定理(n个同余方程x≡a1(modp1))11.二次剩余((ax+k)2≡n(modp)(ax+k)^2≡n(modp)(ax+k)2≡n(modp))12.十进制矩阵快速幂(n很大很大的时候)13.欧拉函数14.费马小定理15.二阶常系数递推关系求解方法(a_n=p*a_{n-1}+q*a_{n-2})16.高斯消元17.矩阵快速幂18.分解质因数19.线性递推式BM(杜教)20.线性一次方程组解的情况21.求解行列式的逆矩阵,伴随矩阵,矩阵不全随机数不全组合数学:1.循环排列(与环有关的排列组合)计算几何:1.三角形(求面积))2.多边形3.三点求圆心和半径4.扫描线(矩形覆盖求面积)(矩形覆盖求周长)5.凸包(平面上最远点对)6.求凸多边形的直径7.求凸多边形的宽度8.求凸多边形的最小面积外接矩形9.半平面交图论:基础:前向星1.最短路(优先队列dijkstra)2.判断环(tarjan算法)3.最小生成树(Kruskal模板)4.最小生成树(Prim)5.Dicnic最大流(最小割)6.无向图最小环(floyd)7.floyd算法的动态规划(通过部分指定边的最短路)8.图中找出两点间的最长距离9.最短路(spfa)10.第k短路(spfa+A*)11.回文树模板12.拓扑排序(模板)13.次小生成树14.最小树形图(有向最小生成树)15.并查集(普通并查集,带权并查集,)16.求两个节点的最近公共祖先(LCA)17.限制顶点度数的MST(k度限制生成树)18.多源最短路(spfa,floyd)19.最短路(输出字典序最小)20.最长路图论题目简述字符串:1.字典树(多个字符串的前缀)2.KMP(关键字搜索)3.EXKMP(找到S中所有P的匹配)4.马拉车(最长回文串)5.寻找两个字符串的最长前后缀(KMP)6.hash(进制hash,无错hash,多重hash,双hash)7.后缀数组(按字典序排字符串后缀)8.前缀循环节(KMP的fail函数)9.AC自动机(n个kmp)10.后缀自动机小技巧:1.关于int,double强转为string2.输入输出挂3.低精度加减乘除4.一些组合数学公式5.二维坐标的离散化6.消除向下取整的方法7.一些常用的数据结构(STL)8.Devc++的使用技巧9.封装好的一维离散化10.Ubuntu对拍程序11.常数12.Codeblocks使用技巧13.java大数叮嘱共173页
2024/5/29 4:58:24 8.42MB ACM ICPC CCPC
1
数据挖掘在各行业的应用论文数据仓库与数据挖掘.caj空间数据挖掘技术.caj数据仓库与数据挖掘技术及其在科技情报业的应用前景.caj相关案件的数据挖掘.caj数据挖掘技术.caj一种实时过程控制中的数据挖掘算法研究.cajEIS环境下的数据挖掘技术的研究.caj数据挖掘及其工具的选择.caj数据挖掘技术与中国商业银行业务发展策略.caj数据挖掘工具DMTools的设计与实现.caj数据仓库、数据挖掘在银行中的应用.caj基于信息熵的地学空间数据挖掘模型.caj数据挖掘及其在商业银行中的应用.caj数据挖掘与决策支持系统.caj数据仓库、数据集市和数据挖掘.caj数据仓库与数据挖掘1.cajIDSS中数据仓库和数据挖掘的研究与实现.caj基于粗糙集理论的数据挖掘模型.caj数据挖掘及其在SXWG_EIS中的应用.caj数据挖掘——技术与应用综述.caj挖掘转移规则一种新的数据挖掘技术.caj以地物识别和分类为目标的高光谱数据挖掘.caj数据挖掘与虚拟数据库.caj数据挖掘与电力系统.caj浅说数据挖掘.caj带Rough算子的决策规则及数据挖掘中的软计算.caj数据挖掘系统的一种实现策略.caj信息检索中的数据挖掘技术.caj红外光谱谱图库中的数据挖掘.caj中介粗集及其在数据挖掘中的应用.caj数据挖掘在音高变化规律学习中的应用.caj数据挖掘技术在财经领域的应用.caj知识发现和数据挖掘的研究.caj数据仓库与数据挖掘技术浅谈.caj用户访问模式数据挖掘的模型与算法研究.caj数据仓库的建设与数据挖掘技术浅析.caj分类特征规则的数据挖掘技术.caj数据挖掘技术的主要方法及其发展方向.cajOLAP和数据挖掘技术在Web日志上的应用.caj数据挖掘技术12.caj数据挖掘技术初探.caj探索式数据挖掘模型的讨论.caj前向网络bp算法在数据挖掘中的运用.caj数据挖掘在Internet信息导航系统中的应用研究.caj数据挖掘技术123.caj基于粗糙集(Roughset)的数据挖掘及其实现.caj数据挖掘技术在建模、优化和故障诊断中的应用.cajFCC油品质量指标智能监测系统的数据挖掘与修正技术.caj一种测试数据挖掘算法的数据源生成方法.caj基于数据挖掘的类比推理技术在石油产品分析系统中的实现.caj神经网络在数据挖掘中的应用研究.caj数据挖掘方法的评述.caj基于数据挖掘的类比推理技术在石油产品分析系统中的实现1.caj一个面向电子商务的数据挖掘系统的设计与实现.caj数据挖掘技术在煤与瓦斯突出预测中的应用研究.caj基于数据抽取器实现数据挖掘.caj基于数据挖掘的群决策模型.caj基于数据挖掘的普通话韵律规则学习.caj数据挖掘和知识发现的技术方法.caj可视化数据挖掘技术及其应用.caj神经网络数据挖掘方法中的数据准备问题.kdh基于CORBA的数据挖掘工具KDD-DC.caj基于高校人事信息库的数据挖掘研究.caj数据挖掘管理系统.caj电信网告警数据库中的数据挖掘.caj数据挖掘原理、方法及其应用.caj一种基于数据仓库的数据挖掘系统的结构框架.cajOLAP与数据挖掘一体化模型的分析与讨论.caj一种新型数据分析技术——数据挖掘.cajaaa数据挖掘和数据仓库及其在电信业中的应用.caj数据挖掘技术及其应用.caj数据挖掘中概念树的标准、生成和实现.kdhXML与面向Web的数据挖掘技术.caj数据挖掘和数据仓库及其在电信业中的应用.caj数据挖掘技术及其在地学中的应用.caj结合数据融合和数据挖掘的医疗监护报警.caj基于多媒体数据库的数据挖掘系统原型.caj数据挖掘技术1.caj股票信息的数据挖掘.caj多媒体数据挖掘的相关媒体特征库方法.caj基于数据挖掘的深部采场岩爆知识的自动获取.caj空间数据挖掘理论与方法的研究.caj金融数据挖掘中的非线性相关跟踪技术(英文).caj数据挖掘技术的一个应用模型.cajDNA中的数据挖掘和启动子识别.caj数据仓库与数据挖掘12.caj数据挖掘系统设计.caj数据挖掘方法的研究.caj用数据挖掘技术优选侧钻井井位.caj关注政府上网后的数据挖掘.kdh数据挖掘技术及其在电力系统中的应用.caj目前数据挖掘算法的评价.caj基于数据挖掘的地下硐室围岩稳定性判别.caj基于属性分类的数据挖掘方法.caj基于数据挖掘模型的高压输电线系统故障诊断.caj用于建模、优化、故障诊断的数据挖掘技术.caj格子机数据挖掘方法.caj数据挖掘及其在电力系统中的应用.kdh用于
1
本文基于支持向量机(SVM)和改进的粒子群优化(IPSO)算法(SVM-IPSO)创建了双向预测模型,以预测碳纤维的性能和生产参数。
在SVM中,选择对预测性能有重要影响的参数至关重要。
提出了IPSO对它们进行优化的方法,然后将SVM-IPSO模型应用于碳纤维产量的双向预测。
SVM的预测精度主要取决于其参数,因此利用IPSO来寻找SVM的最佳参数,以提高其预测能力。
受小区通信机制的启发,我们通过将全球最佳解决方案的信息纳入搜索策略来提出IPSO,以提高开发效率,并采用IPSO建立双向预测模型:在前向预测的方向上,我们认为富有成效参数作为输入,属性索引作为输出;
在向后预测的方向上,我们将性能指标视为输入,将生产参数视为输出,在这种情况下,该模型成为新型碳纤维的方案设计。
来自一组实验数据的结果表明,该模型的性能优于径向基函数神经网络(RNN),基本粒子群优化(PSO)方法以及遗传算法和改进的粒子群优化(GA-IPSO)方法在大多数实验中都是如此。
换句话说,仿真结果证明了SVM-IPSO模型在处理预测问题方面的有效性和优势。
2024/5/15 2:02:19 536KB support vector machine; particle
1
GB∕T33577-2017智能运输系统车辆前向碰撞预警系统性能要求和测试规程
2024/3/26 7:25:40 2.02MB 自动驾驶 辅助驾驶 ADAS
1
隐马尔科夫模型HMM的具体算法代码,包括前向、后向算法、EM参数重估等。
1
前向回归法,求解特征选择matlab源程序。
本来是lasso模型用lars算法求解的,lars写不出来,只能用前向回归替代
2024/3/8 7:48:30 1KB 前向回归 lasso
1
SeetaFace2采用标准C++开发,全部模块均不依赖任何第三方库,支持x86架构(Windows、Linux)和ARM架构(Android)。
SeetaFace2支持的上层应用包括但不限于人脸门禁、无感考勤、人脸比对等。
编译简介2.1编译依赖GNUMake工具GCC或者Clang编译器CM2.2linux和windows平台编译说明linux和windows上的SDK编译脚本见目录craft,其中craft/linux下为linux版本的编译脚本,craft/windows下为windows版本的编译脚本,默认编译的库为64位Release版本。
linux和windows上的SDK编译方法:打开终端(windows上为VS2015x64NativeToolsCommandPrompt工具,linux上为bash),cd到编译脚本所在目录;
执行对应平台的编译脚本。
linux上example的编译运行方法:cd到example/search目录下,执行make指令;
拷贝模型文件到程序指定的目录下;
执行脚本run.sh。
windows上example的编译运行方法:使用vs2015打开SeetaExample.sln构建工程,修改Opencv3.props属性表中变量OpenCV3Home的值为本机上的OpenCV3的安装目录;
执行vs2015中的编译命令;
拷贝模型文件到程序指定的目录下,运行程序。
2.3Android平台编译说明Android版本的编译方法:安装ndk编译工具;
环境变量中导出ndk-build工具;
cd到各模块的jni目录下(如SeetaNet的Android编译脚本位置为SeetaNet/sources/jni,FaceDetector的Android编译脚本位置为FaceDetector/FaceDetector/jni),执行ndk-build-j8命令进行编译。
编译依赖说明:人脸检测模块FaceDetector,面部关键点定位模块FaceLandmarker以及人脸特征提取与比对模块FaceRecognizer均依赖前向计算框架SeetaNet模块,因此需优先编译前向计算框架SeetaNet模块。
1
tensorflow训练网络模型,生成用于模型预测的pb模型文件,输入图片,进行前向预测
2024/2/2 6:09:32 1KB tensorflow pb inference
1
1、输入层的每个节点,都要与的隐藏层每个节点做点对点的计算,计算的方法是加权求和+激活2、利用隐藏层计算出的每个值,再用相同的方法,和输出层进行计算。
3、隐藏层用都是用Sigmoid作激活函数,而输出层用的是Purelin。
这是因为Purelin可以保持之前任意范围的数值缩放,便于和样本值作比较,而Sigmoid的数值范围只能在0~1之间。
4、起初输入层的数值通过网络计算分别传播到隐藏层,再以相同的方式传播到输出层,最终的输出值和样本值作比较,计算出误差,这个过程叫前向传播(ForwardPropagation)。
误差信号反向传递过程
2023/12/23 21:56:22 1002KB 05
1
共 56 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡