最简单的贝叶斯分类器演示Matlab程序。
入门必备。
 详细请参考本人的博客http://blog.csdn.net/ranchlai/article/details/10375579
2025/5/30 16:32:38 22KB 贝叶斯 分类器 baysian Matlab
1
python机器学习-音乐分类器实现.
2025/5/25 0:10:50 1.11MB hadoop 大数据 机器学习 神经网络
1
使用opencv自带的haarcascade_eye_tree_eyeglasses.xml分类器实现检测人眼,并精准地定位了瞳孔的位置。
代码很简洁,易于理解。
2025/5/8 4:42:06 2.53MB opencv 人眼检测 瞳孔检测 瞳孔定位
1
使用Fisher分类器实现手写数字识别,MATLAB代码,GUI界面手写数字输入。
1
代码采用贝叶斯分类器对mnist数据集进行分类,文件中自带mnist数据集,代码采用python编写,分类正确率达97%以上。
2025/4/21 5:23:34 10.17MB mnist 十分类
1
车辆各个角度图片样本,可直接拿来训练分类器,。
全部为正样本,归一化到33*33大小,总共大于4302张。
1
Matlab项目包含用于朴素贝叶斯分类器的源代码和Matlab示例。
该项目中包含的源代码和文件在“项目文件”部分列出,请确保此资源能满足您的要求
2025/3/26 11:43:49 351KB MatLab 贝叶斯
1
伯努利贝叶斯分类器(BernoulliNB),它假设特征的条件概率分布满足二项分布
2025/3/21 15:44:24 3KB 伯努利 贝叶斯 分类器 python
1
Houston 2013数据集是一个结合了高光谱成像(HSI)与激光雷达(LiDAR)技术的数据集,主要用于遥感与地理信息系统研究领域。
该数据集针对地理信息的精确分析,包含了丰富的空间维度信息和光谱维度信息,使得它在地表覆盖分类、城市环境监测、农业遥感等多个领域具有重要的研究价值。


具体来说,高光谱成像技术能够在连续的光谱波段范围内获取地物的光谱信息,HSI数据集因而包含了成千上万的光谱波段,能够反映出地物在不同波长下的反射特性。
这些信息对于识别和分类不同的地物类型,如植被、水体、人造地物等具有重要意义。


另一方面,激光雷达技术通过发射激光脉冲并测量反射回来的信号来获得地表的高精度三维结构信息。
LiDAR数据集通常包括地物的高度信息、形状细节以及地表粗糙度等特征,这些信息对于地形分析、建筑物建模以及树木高度测量等方面至关重要。


Houston 2013数据集将HSI与LiDAR数据集分别划分为测试集和训练集,这样的划分可以用于开发和评估地表分类和遥感影像解译算法。
在遥感影像解译中,测试集用于验证算法的准确性,而训练集则用于训练分类器或机器学习模型,使得模型能够学习如何区分不同的地物类别。


该数据集的文件名称列表揭示了数据集的结构,其中HSI_TeSet.mat和HSI_TrSet.mat分别代表了高光谱成像数据集的测试集和训练集,LiDAR_TeSet.mat和LiDAR_TrSet.mat分别代表了激光雷达数据集的测试集和训练集。
TeLabel.mat和TrLabel.mat则可能包含了对应测试集和训练集的标签信息,即每一块地物的具体类别标签。


在处理这些数据集时,研究者需要熟悉遥感影像分析的常用工具和方法,例如使用ENVI、ArcGIS、ERDAS Imagine等软件对HSI数据进行预处理和分析,以及使用Terrascan、LIDAR360等软件对LiDAR数据进行点云处理。
除此之外,深度学习方法,特别是卷积神经网络(CNN)在处理HSI数据中也显示出强大的能力,它可以自动提取和学习光谱特征,对于提高分类精度具有显著效果。


Houston 2013数据集通过提供两种不同的遥感技术所获得的综合数据集,为遥感领域的研究者提供了一个宝贵的实验平台,使得他们可以在此基础上开发和测试新的地表分类算法和模型,进而推动遥感技术在环境监测与分析中的应用与发展。
2025/3/18 14:41:47 13.69MB 数据集 LIDAR数据
1
语音情感识别通过特定人语音情感数据库的建立;
语音情感特征提取;
语音情感分类器的设计,完成了一个特定人语音情感识别的初步系统。
对于单个特定人,可以识别平静、悲伤、愤怒、惊讶、高兴5种情感,除愤怒和高兴之间混淆程度相对较大之外,各类之间区分特性良好,平均分类正确率为93.7%。
对于三个特定人组成的特定人群,可以识别平静、愤怒、悲伤3种情感,各类之间区分特性良好,平均分类正确率为94.4%。
其中分类器采用混合高斯分布模型。
2025/3/14 0:41:01 23KB matlab 情感语音
1
共 264 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡