粒子群算法优化BO网络的代码,本人编写的,可以运行,如果有错误,欢迎指出
2020/1/26 12:47:10 2KB matlab pso-bp
1
matlab粒子群算法(PSO)程序,算法优化效果比较,适合研讨改进PSO算法的同学。
2022/9/6 0:19:39 4KB 最优化方法
1
一种粒子群算法优化的rbf神经网络,python完成,这是一次课程作业
2022/9/5 4:49:16 18KB rbf pso
1
常用的神经网络是通过固定的网络结构得到最优权值,使网络的实用性遭到影响。
引入了一种基于方向的交叉算子和变异算子,同时把模拟退火算法引入了遗传算法,结合遗传算法和模拟退火算法的优点,提出了一种优化神经网络结构的遗传——模拟退火混合算法,实现了网络结构和权值的同时优化。
仿真实验表明,与遗传算法和模拟退火算法相比,该算法优化的神经网络收敛速度较快、预测精度较高,提高了网络的处理能力。
1
文件中给出案例数据,列代表指标集(输入集x:1-7,输出集y:8)行代表数据集。
可以用于本科毕业论文或者硕士毕业论文,首先使用SPSS进行出成分分析,然后将主成分得分值作为输入集,输出集保持不变。
通过该算法文件就可以得到预测值,具体步骤可以参考《基于SVM和LS-SVM的住宅工程造价预测研究》。
本算法使用BP神经网络的误差函数作为GWO算法的适应度函数,通过BP神经网络连接权值和阈值的数量来决定GWO算法中灰狼的维数,那么GWO算法寻优的过程就是权值和阈值更新的过程。
因而,GWO算法寻优的过程替代了BP神经网络梯度下降的过程。
经过不断更新和迭代,最终确定出全局最优值,即灰狼α所处的位置。
本算法输出的权值和阈值即作为神经网络的权值和阈值,不在通过神经网络继续训练。
可以参考文献《基于粒子群优化算法的BP网络学习研究》。
2019/11/18 17:14:58 13KB 灰狼算法 神经网络
1
经过将粒子群算法也支持向量机结合,使用支持粒子群算法优化支持向量机参数,并训练支持向量机
2017/11/9 10:34:22 1KB PSOSVM
1
通过GWO灰狼算法优化支持向量机SVM建立各参数与研讨目标的映射模型,代代码比较全,可以直接在MATLLAB里面使用
2016/5/25 21:26:35 4KB GWO SVM 灰狼算法 支持向量机
1
针对FDK算法重建图像异常耗时的成绩,提出了一种极坐标反投影快速重建算法。
根据三角函数对称性,64幅预处理后的投影数据在反投影过程中同时运算;在极坐标反投影数据映射到笛卡尔坐标时,利用像素位置相关参数的对称性,在不使用查表方法的情况下,使双线性插值的计算量大大减少。
实验结果表明,采用这两种措施实现了FDK算法优化,与传统的FDK算法相比,重建速度提高8倍,采用CUDA技术,实现GPU对其加速,速度提高40倍,且均不产生新的误差。
1
多目标遗传算法优化PID参数,是M文件。
内容很详细,有需求的可以下载
1
008_基于遗传算法优化BP神经网络(GA-BP)的数据分类预测Matlab代码完成过程
1
共 166 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡