黑马校对软件百度网盘下载地址,精确校对领导人姓名、职务和领导人排序错误。
精确校对涉及台湾和其他敏感的政治性错误。
即时更新的、可自定义的领导人职务库。
校对插件直接嵌入在Acrobat中校对PDF文件。
可把校对标记转换成注释结果,便于他人查看。
直接嵌入在Word中,编辑、校对完满结合。
直接嵌入在WPS中,编辑、校对完满结合。
直接嵌入在飞腾系统中,排版、校对完满结合。
支持Acrobat6.0/7.0/8.0/9.0版本;
支持Office97~2007版;
支持WPS2007/2009版;
支持飞腾3.1~4.1版。
2015/2/20 23:57:17 79B 黑马校对软
1
提出了一种激光线宽测量新方法—系统参数不敏感型循环损耗补偿循环延迟自外差法(LC-RDSHI)。
通过对系统输出功率谱密度函数进行推导以及拍频功率谱仿真,分析讨论了该方法对系统参数不敏感的特性。
在此基础上,搭建相应实验装置,观测了系统参数对LC-RDSHI输出功率谱的影响,发现实验观测结果与理论分析相吻合。
此外,基于不同的实验系统参数,将本方法与传统的LC-RDSHI进行了线宽测量比较。
结果表明,系统参数不敏感型LC-RDSHI具有更高的线宽测量精度,并且测试过程愈加简单,从而具有更好的应用前景。
2021/5/10 21:55:33 7.87MB 激光器 线宽测量 循环延迟 功率谱
1
这是我自己写的一个比较成熟的排课系统,并且已经成功上线使用(为了保密,我已在代码中将敏感信息全部改成了电视剧的人名),可作为计算机专业的毕业设计。
最后会将排课的结果自动写入word(自动生成表格,并且自动将数据填入表格,用到技术freemark)。
用到技术是Javaswing。
代码总共约1万行。
拥有冲突处理机制。
使用方式:运行window文件-点击修改基础数据-自动对应-然后点击排课。
这时会自动在d盘下,生成temp文件夹,教师和班级的课表word文件会在temp文件夹中自动出现。
我注释写的不是很多。
如果有什么问题请联系qq:739690811(添加时说是问程序问题的)。
2016/11/24 23:34:48 884KB java swing 排课系统
1
ANSYSworkbench培训讲义教程完整版,包含多目标设计,呼应面优化,敏感度分析,可靠度分析等。
2018/9/27 9:37:23 123.92MB workbench优化
1
从其他地方下载的,分享给大家,外面有四种方式,分别为不同的算法
2016/3/8 1:51:01 3.29MB 网站敏感词检测
1
模糊c均值(FCM)聚类算法已广泛应用于许多医学图像分割中。
但是,由于不考虑空间信息,因而常规的标准FCM算法对噪声敏感。
为了克服上述问题,提出了一种新颖的改进的FCM算法(以后称为FCM-AWA)用于图像分割。
该算法是通过修改常规FCM算法中的目标函数,即通过将空间邻域信息合并到标准FCM算法中来实现的。
给出了自适应加权平均(AWA)滤波器以指示相邻像素对中心像素的空间影响。
在实施加权平均图像时,通过预定义的非线性函数自动确定控制模板(邻居寡妇)的参数(加权系数)。
该算法既适用于人工合成图像,又适用于真实图像。
此外,使用基于算法的分割方法对牙菌斑进行了定量分析。
实验结果表明,与标准FCM算法和另一种FCM算法(由Ahmed提出)相比,该算法对噪声的鲁棒性更高。
此外,使用所提出的方法对牙菌斑进行定量的结果表明,FCM-AWA提供了一种定量,客观和有效的牙菌斑分析方法,具有广阔的前景。
2015/7/18 7:39:45 128KB Fuzzy c-means (FCM); Spatial
1
《阵列信号处理的理论和应用》分为12章,主要内容包括波束构成、DOA估计、相干信号的DOA估计、二维DOA估计、宽带阵列信号处理、阵列多参数估计等。
《阵列信号处理的理论和应用》在全面介绍阵列信号处理的经典理论的同时,对近来一些新算法(如PARAFAc和四元数理论)进行了讲解,同时介绍了MIMO雷达、极化敏感阵列和声矢量传感器阵列的一些应用
2016/2/26 8:09:57 76.77MB 阵列信号处理
1
正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)技术可以出色的对抗抗多径衰落、消除码间干扰且具有极高的频谱利用率。
此外它还采用了快速傅立叶变换,大大降低了收发机的实现复杂度,因此被广泛地应用于HDSL、ADSL、DAB、HDTV、WLAN等领域中。
但是,目前OFDM技术还有很多关键问题没有得到有效解决,如对频偏敏感、高峰均功率比问题等,这些都限制了OFDM技术的近一步广泛应用。
本论文主要围绕自适应压扩法降低峰均功率比问题展开论述,并利用matlab软件完成了仿真。
主要做了以下工作:论文首先回顾OFDM发展历程,说明了该技术的优缺点,讲解了OFDM技术原理,介绍了OFDM信号的产生过程,并对OFDM信号的收发机制进行了仿真。
接着,给出峰均功率比的定义和分布,分析了产生高峰均值的原因,简要地介绍了其它预畸变方法,如限幅法,峰值加窗,传统的压扩技术。
最后,分析自适应压扩法降低PAPR的功能,并用matlab完成相关仿真。
2017/5/20 19:49:40 1.18MB 自适应压扩法 PAPR 峰均比 OFDM
1
开发人员正在转向分散存储,以此来避免审查,服务器中断和黑客攻击。
使用分散式系统,连接可以动态地找到通过Internet的最有效路径,并绕过拥塞或破坏。
Algorand区块链提供了一种去中心化,可扩展且安全的协议,使其成为共享信息的出色媒介,但是,Algorand买卖的当前最大票据大小为1KB,从而限制了所传输数据的数量。
大文件无法有效地存储在区块链上。
一方面,区块链充斥着必须在区块链网络内传播的数据。
另一方面,由于区块链是在许多节点上复制的,因此需要大量的存储空间而没有立即实现的目的。
IPFS是一个文件共享系统,可用于更有效地存储和共享大文件。
它依赖于可以轻松存储在区块链中的加密哈希。
但是,IPFS不允许用户与选定的各方共享文件。
如果需要共享敏感或个人数据,则这是必需的。
在上载到IPFS之前,文件内容加密可保护敏感数据免受未经授权的访问。
然后利用Algorand区块链技术来跟踪文件哈希和文件名,从而确保透明性和速度。
Algorand-IPFS集成使我们能够创建具有安全数字内容的分散式应用程序。
!!!演示请查看该站点,其中列出了要共享的纯/加密文
2016/7/5 6:30:41 2.38MB node vue ipfs algorand
1
GJB151B-2013军用设备和分零碎电磁发射和敏感度要求与测量
2019/10/15 13:17:02 5.12MB 标准
1
共 182 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡