理解PCM和汉明码编码原理和译码原理,并能通过MATLAB系统软件来实现编译码,且通过各个元件的参数进行设置,观察示波器的波形,并分析系统性能。
在课程设计中,用到MATLAB环境下的Simulink仿真平台。
在熟悉Simulink的工作环境下,构建系统模型。
对信号进行抽样,量化,编码,转化成二进制数字信号,进行汉明码编码
2025/6/1 2:53:51 614KB PCM编码 matlab
1
本文件撰写了二输入与非门的电路的网表,介绍了HSPICE的一些主要描述电路的语句。
用这些语句对电路模拟的标题,电路的连接方式即拓扑信息,构成电路的元件、器件、电源等的属性、参数、模型、所加的注释、电路模拟结束等进行描述。
2025/5/31 2:30:24 434B .sp hspice 电路网表
1
【PLC电梯程序】是一种基于可编程逻辑控制器(PLC)技术实现的电梯控制系统,它通过梯形图编程语言来设计电梯的运行逻辑。
在工业自动化领域,PLC被广泛应用于电梯控制,因为它能提供高效、可靠且易于维护的解决方案。
在描述中提到的“PLC电梯梯形图”是PLC编程的一种常见方式,梯形图是一种直观的编程图形,其结构类似电气电路图,便于电气工程师理解和编写控制逻辑。
这个程序包含了详细的注解,这使得学习者和使用者可以更好地理解每一步操作的目的和功能,对于参加西门子智能控制比赛的选手来说,这是一个宝贵的参考资料。
西门子是一家全球知名的工业自动化公司,他们的PLC产品线广泛,包括SIMATIC系列,这些产品通常支持多种编程语言,如LadderDiagram(梯形图)、StructuredText(结构化文本)、FunctionBlockDiagram(功能块图)等。
本示例可能基于西门子的PLC产品,通过梯形图实现电梯的运行控制,包括但不限于电梯的上行、下行、停靠楼层、开门、关门、召唤响应、安全保护等功能。
在提供的压缩包文件中,我们可以看到以下文件:1.`Gppw.gpj`:这是西门子SIMATIC编程软件Step7Micro/WINSP4(通常称为“S7-1200/1500”的编程工具)的项目文件,包含了整个PLC程序的源代码。
2.`Gppw.gps`:可能为项目设置和配置文件,存储了工程的硬件配置、网络设置等相关信息。
3.`Project.inf`:项目信息文件,包含了项目的基本元数据,如创建日期、作者等。
4.`_desktop.ini`:Windows系统中的一个配置文件,用于定义文件夹在桌面上的显示方式。
5.`ProjectDB.mdb`:可能是项目数据库文件,用于存储项目相关数据和历史信息。
6.`COMMENT.wcd`:可能包含程序中的注释和文档,帮助用户理解程序的功能和工作原理。
7.`MAIN.wdv`:主程序或工作区文件,可能包含了梯形图的主要逻辑。
8.`param.wpa`:可能保存了程序的参数设置,如I/O地址分配、定时器和计数器的设定值等。
9.`MAIN.wpg`:程序图形界面文件,展示了PLC程序的布局和结构。
这些文件共同组成了一个完整的PLC电梯控制程序,通过它们,用户可以学习到如何利用PLC实现电梯的精确控制,包括如何处理输入信号(如按钮和传感器信号),如何生成输出信号(如电机驱动和指示灯控制),以及如何实现安全保护机制等。
同时,由于有详细的注解和实际应用背景,对于想要深入理解PLC编程和电梯控制系统的学者或工程师来说,这是一个极好的实践案例。
2025/5/30 19:01:12 12KB
1
新版正方教务系统请在桌面生成code.txt并输入相关参数
2025/5/30 16:19:05 5KB asd
1
基于ZN的PID参数自整定算法,可实现PID参数的自动整定,可在此基础上稍微手工调整即可在工业上应用
2025/5/30 12:51:11 1KB opp
1
一般来说,如果不是不可能完全描述多孔介质的微观结构是非常困难的,因为它具有复杂和随机性。
人们只能获得一些基于统计的平均信息,如平均孔隙度或更好的孔径分布。
如果需要对多孔结构的全部细节进行更为严格的处理,则必须解决此问题。
事实上,更准确地预测多孔介质的传输特性需要更详细地描述整个多孔介质的形态,包括几何性质(如颗粒或孔形状)以及体积和拓扑性质(如孔迂曲度和互连性)。
已经报道了几次这样的尝试。
重建过程是一种流行的方法再现多孔结构[。
然而,确定相关函数非常复杂。
随机当其他微观结构细节存在时,障碍物的位置是构建人造多孔介质最简单的位置可以忽略。
为了调整孔隙大小和连通性,Coveney等人提出了一种孔隙增长随时间模型。
通过从进一步与集群增长理论有关,我们建议本文是一个更全面的方法,其中四个参数被确定用于控制内部多孔颗粒介质结构,从而形成一个称为四重结构生成集(QSGS)的集合。
这一套使我们能够生成多孔形态学特征,为许多真正的多孔介质的形成进程作出贡献。
2025/5/30 12:29:12 3KB QSGS
1
最好用的串口调试工具,串口波形工具,适合调节PID等参数。
2025/5/29 19:08:57 5.03MB 串口工具助手
1
径向基函数(RadialBasisFunctions,以下简称RBF)在数值和科学计算等领域被广泛应用,例如解微分方程、人工神经网络、曲面重建、计算机辅助设计、计算机图形学和多元插值等。
RBF插值方法不受输入参数的限制,可以进行高维插值。
2025/5/29 14:21:20 1.25MB 径向基函数 RBF
1
C++实现GMM分类模型的源码,高斯参数自己可以调整
2025/5/28 20:15:48 7KB GMM C++
1
数字万用表是电子技术工作中常用的测量工具,它能够测量电压、电流、电阻等参数,并具备测量二极管、通断检测、电容测量等功能。
本教材旨在为初学者提供一个清晰的数字万用表使用入门指南,借助彩色插图,详细地介绍万用表的各个按键和接口的功能和操作方法。
使用数字万用表前必须先阅读档位,即选择合适的量程。
量程选择不当可能会导致测量误差或者损坏万用表。
测量完成后,应将量程调至最大档位或“OFF”位置,这称为拨空档,以防下次使用时误操作或突然接入大电流损坏表头。
读数时万用表应保持水平,以确保读数的准确性。
在测量电阻(R)、电容(C)或电流(I)之前,应先将万用表的指针调零,这有助于提高测量的准确性。
在切换不同的测量功能或量程时,也要注意重新调零。
关于极性和连接方式,万用表内部的黑色探头应该连接到测量点的负极或“+”端子。
测量电流时,需要将万用表串联在电路中;
测量电压时,则需要将万用表并联在被测电路两端。
在进行测量时,应避免极性接反,这会直接影响测量结果,并有可能损坏万用表。
数字万用表的测量项目包括:1.交流电压和直流电压:通过选择万用表上的电压测量功能,并设置适当的量程,可以测量电路中的交流或直流电压。
2.测量通断:在测量电路的导通性时,万用表可以发出声音或显示读数,以判断电路连接是否良好。
3.二极管测量:万用表设有专门的二极管测量档位,可以测量二极管的正向和反向电阻,从而判断二极管的好坏。
4.电阻测量:通过选择电阻测量档位,并将万用表的两个探针接到电阻两端,万用表可以测出电阻的阻值。
测量电阻时一定要先调零,且不带电测量,以免损坏万用表。
5.电容测量:万用表的某些型号有测量电容的功能。
需要将电容器的两极断开电路后进行测量,以避免电路中其他元件对测量结果的干扰。
6.电流测量:测量电流时,万用表需要串联在电路中。
在进行测量之前,应注意表笔的正负极,因为电流测量涉及到电荷流动的方向。
7.三极管测量:万用表可以辅助判断三极管的工作状态,比如是否工作在放大区,但更深入的测试可能需要专用的测试设备。
本教材的编排以图解为主,结合了使用提示和经验技巧,让初学者可以快速上手,逐步掌握数字万用表的各种功能和正确的测量方法。
通过掌握这些知识点,初学者可以有效地使用数字万用表进行各种电气参数的测量,为电子设备的维护、故障排查和电路设计提供重要支持。
2025/5/27 22:00:51 685KB 数字万用表使用 如何使用万用表
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡