可以检查fcmd里rom的像素工具而且这个我找了好久才找到
2016/11/10 1:15:21 200KB 汉化
1
很实用的Verilog实例!目录:王金明:《VerilogHDL程序设计教程》程序例子,带说明。
【例3.1】4位全加器【例3.2】4位计数器【例3.3】4位全加器的仿真程序【例3.4】4位计数器的仿真程序【例3.5】“与-或-非”门电路【例5.1】用case语句描述的4选1数据选择器【例5.2】同步置数、同步清零的计数器【例5.4】用initial过程语句对测试变量A、B、C赋值【例5.5】用begin-end串行块产生信号波形【例5.6】用fork-join并行块产生信号波形【例5.7】持续赋值方式定义的2选1多路选择器【例5.8】阻塞赋值方式定义的2选1多路选择器【例5.9】非阻塞赋值【例5.10】阻塞赋值【例5.11】模为60的BCD码加法计数器【例5.12】BCD码—七段数码管显示译码器【例5.13】用casez描述的数据选择器【例5.15】用for语句描述的七人投票表决器【例5.16】用for语句实现2个8位数相乘【例5.17】用repeat实现8位二进制数的乘法【例5.18】同一循环的不同实现方式【例5.19】使用了`include语句的16位加法器【例5.20】条件编译举例【例6.1】加法计数器中的进程【例6.2】任务举例【例6.3】测试程序【例6.4】函数【例6.5】用函数和case语句描述的编码器(不含优先顺序)【例6.6】阶乘运算函数【例6.7】测试程序【例6.8】顺序执行模块1【例6.9】顺序执行模块2【例6.10】并行执行模块1【例6.11】并行执行模块2【例7.1】调用门元件实现的4选1MUX【例7.2】用case语句描述的4选1MUX【例7.3】行为描述方式实现的4位计数器【例7.4】数据流方式描述的4选1MUX【例7.5】用条件运算符描述的4选1MUX【例7.6】门级结构描述的2选1MUX【例7.7】行为描述的2选1MUX【例7.8】数据流描述的2选1MUX【例7.9】调用门元件实现的1位半加器【例7.10】数据流方式描述的1位半加器【例7.11】采用行为描述的1位半加器【例7.12】采用行为描述的1位半加器【例7.13】调用门元件实现的1位全加器【例7.14】数据流描述的1位全加器【例7.15】1位全加器【例7.16】行为描述的1位全加器【例7.17】混合描述的1位全加器【例7.18】结构描述的4位级连全加器【例7.19】数据流描述的4位全加器【例7.20】行为描述的4位全加器【例8.1】$time与$realtime的区别【例8.2】$random函数的使用【例8.3】1位全加器进位输出UDP元件【例8.4】包含x态输入的1位全加器进位输出UDP元件【例8.5】用简缩符“?”表述的1位全加器进位输出UDP元件【例8.6】3选1多路选择器UDP元件【例8.7】电平敏感的1位数据锁存器UDP元件【例8.8】上升沿触发的D触发器UDP元件【例8.9】带异步置1和异步清零的上升沿触发的D触发器UDP元件【例8.12】延迟定义块举例【例8.13】激励波形的描述【例8.15】用always过程块产生两个时钟信号【例8.17】存储器在仿真程序中的使用【例8.18】8位乘法器的仿真程序【例8.19】8位加法器的仿真程序【例8.20】2选1多路选择器的仿真【例8.21】8位计数器的仿真【例9.1】基本门电路的几种描述方法【例9.2】用bufif1关键字描述的三态门【例9.3】用assign语句描述的三态门【例9.4】三态双向驱动器【例9.5】三态双向驱动器【例9.6】3-8译码器【例9.7】8-3优先编码器【例9.8】用函数定义的8-3优先编码器【例9.9】七段数码管译码器【例9.10】奇偶校验位产生器【例9.11】用if-else语句描述的4选1MUX【例9.12】用case语句描述的4选1MUX【例9.13】用组合电路实现的ROM【例9.14】基本D触发器【例9.15】带异步清0、异步置1的
2020/10/10 20:05:56 127KB Verilog 实例 经典
1
资源里面包括详细说明和Quartus工程文件,其中将修改了的OC8051下载到DE2上,并且写了一段LED灯的测试程序,使用该测试程序初始化OC8051的ROM,使得OC8051下载到DE2上后,可以运转LED灯测试程序。
在文档中说明了如何修改OC8051的ROM
2021/9/11 14:35:33 19.07MB OC8051 DE2 Altera
1
迪兰R9370X酷能4G原版BIOS文件
2019/8/26 4:33:48 128KB R9370X 迪兰酷能4G 海力士显存
1
基于FPGA的应用技术,采用Altera公司DE2-70开发板的CycloneⅡ系列EP2C70作为核心器件,设计了一种基于FPGA的新型可调信号发生器。
通过QuartusⅡ软件及VerilogHDL编程语言设计LPM_ROM模块定制数据ROM,并通过地址指针读取ROM中不同区域的数据,根据读取数据间隔的不同,实现调整频率功能,该系统可产生正弦波、方波、三角波和锯齿波4种波形信号,并使用嵌入式逻辑分析仪对产生的不同波形信号进行实时测试,实验证明,该可调信号发生器系统软件模仿数据和理论定制波形相吻合。
2022/10/11 13:39:49 1.23MB 信号发生器 EP2C70 Verilog
1
4个rom总有一个合适你
2022/9/30 17:09:22 443.52MB 中控大屏
1
百度手环开源材料ROM烧写工具.rar,百度智能手环ROM设计.pdf,百度智能手环蓝牙私有通信协议.pdf百度智能手环硬件设计.pdf,参考设计BOM.xlsduband-master.zip(源代码)
2015/6/6 13:15:20 70.49MB 百度手环  开源资料
1
全志ROM解包封包
2020/11/3 19:39:47 168KB 全志ROM解包封包
1
可以直接将图片生成Mif文件,作为FPGA的ram或者rom的输出测试文件,也可以将txt文件转化成mif文件,很是方便
2022/9/26 10:27:30 272KB FPGA
1
关于Proteus仿真ADC0809,说明以下几点:1、在Proteus中,ADC0809是不可仿真的。
但可以用ADC0808代替ADC0809进行仿真。
ADC0808与ADC0809有相同的引脚,功能极为相似。
在Proteus中,可以认为:ADC0808就是ADC0809。
2、说明几个关键引脚的输出信号:1)OE数据输出允许信号,高电屏有效(意思就是,当OE接高电屏时才允许将转换后的结果从ADC0808的OUT1~OUT8引脚输出,否则,在内部锁存)。
2)ADC0808的ALE信号(22引脚),以及START信号(6引脚)ALE称为“地址锁存允许信号”,高电屏有效。
就是说:ALE=1时,允许将ADDA~ADDC的地址输入到ADC0808的内部译码器,经过译码后选定外部模拟量的输入通道。
START信号,这是一个必须重点掌握的信号,向START送入一个高脉冲,其上升沿使ADC0808内部的“逐次逼近寄存器SAR”复位,其下降沿可以*启动A/D转换,并同时使EOC引脚为低电平*(两个*之间的内容必须牢记!)。
应注意到:ALE是高电屏有效,而START的有效部分只是上升沿和下降沿,所以在连接电路时可以将ALE信号与START信号连接到一起,使它们在同一个脉冲上各取所需。
3)EOCAD转换结束的标志信号,在AD转换结束时成现高电屏。
不能通过以下方式使EOC恢复低电屏:假设EOC连到P1.0口上,企图通过CLRP1.0使EOC恢复低电屏是不可行的。
在Proteus仿真时,会出现黄色信号,表示短路。
在实际当中,短路是非常可怕的事情。
千万注意:EOC是靠START的下降沿清零的!4)在Proteus中,ADC0808的时钟信号要用DCLOCK产生(应该知道啥是DCLOCK吧?),因为在Proteus仿真中,当不外接扩展ROM时,单片机的ALE信号(注意,不是ADC0808的ALE信号!)在Proteus仿真中不会出现,因此即使外接74LS74作分频也不会得到时钟信号。
发点牢骚:很多高校都以ADC0809作为AD转换的代表芯片来讲解,但却不细说其工作过程和工作原理。
我们杨红梅老师上课这样说的:“当程序执行到MOVX@DPTR,A的时候,会启动AD转换”。
我不理解为什么执行到这里就启动AD转换了,于是说道:“老师,这里我不理解。
”作为一名十分有责任感的副教授,她是这样回答的:“就是执行到这里就启动了,你还想理解到什么程度?”……令我实在无语。
于是我到校图书馆翻阅了一些相关的高校教材,其各书所述大同小异,也没什么收获,现在的高校教材呀!不得不令人怀疑有抄袭之嫌。
后来,在清华大学出版社出版的《单片机原理与应用及C51程序设计》一书中获得了一些启发,又亲身动手做了仿真,才略懂一二。
对于希望学好单片机的同仁,我有一点小常识奉送,就是:务必学会读懂时序图,即使老师上课不讲,自己也要自学,并学会。
我写的这个程序极其短小,重点在于使读者通过仿真控制理解上述关键信号的作用,进而理解ADC0808的工作过程和工作原理。
为了减少赘余,突出重点,并没有用单片机对AD转换后的数字信号行处理,而是通过ADC0808的OUT1~OUT8引脚直接输出。
希望看过此例的同仁能通过此例真正学懂ADC0808(也即是:ADC0809)。
相关的时序图,百度上有丰富的资源,在这里就不赘赠了,请见谅。
2016/5/5 21:26:50 37KB Proteus AD转换 单片机
1
共 157 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡