MATLAB神经网络43个案例分析源代码&数据《MATLAB神经网络43个案例分析》目录第1章BP神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归--非线性函数回归的实现第8章GRNN网络的预测----基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章初始SVM分类与回归第13章LIBSVM参数实例详解第14章基于SVM的数据分类预测——意大利葡萄酒种类识别第15章SVM的参数优化——如何更好的提升分类器的性能第16章基于SVM的回归预测分析——上证指数开盘指数预测.第17章基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第18章基于SVM的图像分割-真彩色图像分割第19章基于SVM的手写字体识别第20章LIBSVM-FarutoUltimate工具箱及GUI版本介绍与使用第21章自组织竞争网络在模式分类中的应用—患者癌症发病预测第22章SOM神经网络的数据分类--柴油机故障诊断第23章Elman神经网络的数据预测----电力负荷预测模型研究第24章概率神经网络的分类预测--基于PNN的变压器故障诊断第25章基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选第26章LVQ神经网络的分类——乳腺肿瘤诊断第27章LVQ神经网络的预测——人脸朝向识别第28章决策树分类器的应用研究——乳腺癌诊断第29章极限学习机在回归拟合及分类问题中的应用研究——对比实验第30章基于随机森林思想的组合分类器设计——乳腺癌诊断第31章思维进化算法优化BP神经网络——非线性函数拟合第32章小波神经网络的时间序列预测——短时交通流量预测第33章模糊神经网络的预测算法——嘉陵江水质评价第34章广义神经网络的聚类算法——网络入侵聚类第35章粒子群优化算法的寻优算法——非线性函数极值寻优第36章遗传算法优化计算——建模自变量降维第37章基于灰色神经网络的预测算法研究——订单需求预测第38章基于Kohonen网络的聚类算法——网络入侵聚类第39章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类第40章动态神经网络时间序列预测研究——基于MATLAB的NARX实现第41章定制神经网络的实现——神经网络的个性化建模与仿真第42章并行运算与神经网络——基于CPU/GPU的并行神经网络运算第43章神经网络高效编程技巧——基于MATLABR2012b新版本特性的探讨
2023/12/27 22:29:51 11.87MB MATLAB 神经网络 案例分析
1
在2005年CVPR上,来自法国的研究人员NavneetDalal和BillTriggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测。
而这两位也通过大量的测试发现,HOG+SVM是速度和效果综合平衡性能较好的一种行人检测方法。
后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架。
因此,HOG+SVM也成为一个里程表式的算法被写入到OpenCV中。
在OpenCV2.0之后的版本,都有HOG特征描述算子的API,而至于SVM,早在OpenCV1.0版本就已经集成进去
2023/12/23 21:16:19 4.96MB 人工智能
1
:提出一种SAR图像目标识别新方法。
首次引入BM3D方法,用于滤除原始图像中的相干斑噪声,BM3D结合了空间域和变换域去噪的优势,滤波性能优异。
在特征提取步骤,将低阶Hu矩与高阶Zernike矩组合,Hu矩描述目标的粗略信息,高阶Zernike矩描述目标的细节信息,因此组合矩能够更加全面而细致地表达目标特性。
使用组合矩特征训练SVM分类器,对含噪的SAR图像进行识别实验。
实验结果表明:本文方法的识别率高达98.90%,优于已有的SAR目标识别方法
2023/12/21 8:25:57 607KB 目标识别
1
随着生活水平的不断提高,汽车成为人们生活不可或缺的一部分。
汽车总量的不断攀升造成城市交通拥堵不堪,伴随而来是频发的交通事故。
在这个背景下智能交通越来越受到人们的关注,与此相关的目标检测技术的研究也得到很大的关注,车辆检测就是其中一个关键的组成部分。
车辆检测由于其本身具有的挑战性,例如车辆形状的不同,车辆的视角的不同,车辆的遮挡,光照的差异变化,使车辆检测成为一个十分困难的任务。
当前虽然对于车辆检测的研究已经取得一部分的成果,但是现存算法任然具有局限性,在各种环境下无法得到让人满意的效果,因此本文针对车辆检测进行了研究。
本文所做的工作主要包括两个部分:一研究国内外该课题方向的研究现状,对比不同算法的优缺点,研究不同算子提取车辆特征的效果;
二是基于前面的研究实现基于HOG特征与SVM分类器的车辆检测系统,验证研究算法的可行性。
经过车辆检测系统的仿真验证,本文研究的方法可以有效的提取图像中的车辆,效果良好,速度在可接受的范围内。
2023/12/16 11:31:01 43.09MB 智能交通 HOG特征 SVM 车辆检测
1
基于HOG特征提取的图像分类器,HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述。
通过将整幅图像分割成小的连接区域称为cells,每个cell生成一个方向梯度直方图或者cell中pixel的边缘方向,这些直方图的组合可表示出所检测目标的目标)描述子。
为改善准确率,局部直方图可以通过计算图像中一个较大区域称为block的光强作为measure被对比标准化,然后用这个measure归一化这个block中的所有cells.这个归一化过程完成了更好的照射/阴影不变性。
2023/12/16 11:58:32 17KB HOG 特征提取
1
原创的毕业设计内容,请勿随意抄袭,利用基于zf的fasterrcnn网络进行目标识别
2023/12/12 22:28:22 3.54MB Faster RCNN
1
这是我在做项目时,给下一届接手的人写的一个关于Eigen库的快速上手手册,主要是针对于项目的应用来写的。
当时使用Eigen库的目的是,将Matlab写的,LPCC和MFCC两种声音识别算法,十字形声阵列的MUSIC定位算法,和SVM分类器算法,转换成C++然后移植到到ARM处理器上(操作系统级上的并不是裸机)。
而使用Eigen库的原因就是,其能够在编译时进一步优化,而且只需导入头文件即可进行调用,而不像其他的一些库需要安装那么麻烦。
这篇使用说明是在2016年7月14日完成的。
下面就是关于Eigen矩阵库的使用说明。
2023/12/11 4:13:24 1.47MB Eigen库
1
模式识别,实验报告,“Bayes分类器设计”和“基于Fisher准则线性分类器设计”,有实验原理,有代码,有图,有分析。
2023/12/9 5:52:52 175KB 模式识别 实验报告 分类器设计
1
对于分类器的研究文档
2023/12/7 4:56:13 647KB 分类器研究
1
一种基于AdaBoost的SVM分类器,有具体的算法步骤,可以编程实现,对于初步研究机器学习的人很有帮助哦
2023/12/6 7:07:10 412KB 一种基于AdaBoost的SVM分类器
1
共 258 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡