随着电力系统的快速发展,电力系统信号分析越来越重要。
尤其在并网型电力电子装置被大量应用的背景下,对电网电压的频率和相位检测有很高的精度和实时性要求,锁相环是一种广泛应用且有效的检测方法。
本文阐述了基于双幽变换的软件锁相环(SPLL)基本原理,在Matlab/Simulink中建立了双曲变换SPLL模型,并采用平均值滤波方法滤除谐波分量,提高了暂态响应速度,增强了抗干扰能力。
分别对电网电压不平衡、频率跳变、输入电压含谐波等几种情况进行了仿真。
仿真结果表明该方法能够快速、精确地提取电网电压正负序分量、频率、相位等信息,能够为并网型电力电子装置良好运行提供保障。
关键词:锁相环;
正负序分离;
双如变换;
并网型电力电子装置
2024/4/1 15:08:26 1.15MB spll dq变换
1
使用迁移学习做动物脸部识别:人工智能通过农场的摄像装置获得牛脸以及身体状况的照片,进而通过深度学习对牛的情绪和健康状况进行分析,然后帮助农场主判断出那些牛生病了,生了什么病,那些牛没有吃饱,甚至那些牛到了发情期。
除了摄像装置对牛进行“牛脸”识别,还可以配合上可穿戴的智能设备,这会让农场主更好的管理农场。
这些数据上传到云服务器上,用自己开发的算法通过机器学习让这些海量的原始数据变成直观的图表和信息发送到客户那里。
这些信息包括奶牛的健康分析、发情期探测和预测、喂养状况、位置服务等。
2024/3/30 9:04:09 93KB 迁移学习 脸部识别
1
在电力电子装置中的一个重要组成部分,输入连接到控制电路的PWM信号输出端,输出连接到装置各IGBT的门极和发射极,将装置中的控制电路产生的数字PWM信号进行隔离传输和电平转换和功率放大,实现控制电路对IGBT进行开通和关断动作的控制,从而实现装置的功率变换功能。
2024/3/27 18:28:31 8.58MB IGBY
1
QCT1019-2015汽车变速换挡操纵装置性能要求及台架试验方法.pdf
2024/3/23 1:57:39 1.1MB 拉索
1
基于DSP的蓄电池充放电装置研究,很好地学习资料,你值得一看!
2024/3/19 19:31:11 141KB DSP
1
针对目前五指仿人五指机械手控制方式的局限性,我们设计了一种以操作人员体感手势图像为输入控制信号,操控五指仿人五指机械手的手指按照体感手势进行实时地动作的机械手控制系统。
系统首次采用LeapMotion作为体感设备采集手势数据;
利用计算机程序分析体感数据,发现手势并进行判别;
运用MSP430单片机设定体感手势对应的控制指令;
五指仿生机械手按照单片机的控制指令,完成指定的动作。
经过实际装置测试,五指仿真机械手的手指可以按照体感手势进行实时地动作。
本项目包含三部分内容(1)基于LeapMotionAPI所编写的手势判断处理模块,该程序在LeapAPI自带的Gesture之外,可识别“剪刀”“石头”“布”“竖起大拇指”等4种手势。
(2)LeapMotion上位机与MSP430G2553单片机串口通信程序。
(3)MSP430G2553接收上位机传来参数并产生相应PWM波控制舵机程序。
上位机开发环境:Win7+VS2013语言C++单片机开发环境:Win7+CCSV5.5语言C本项目受中国石油大学(华东)大学生创新训练项目支持
2024/3/13 13:10:12 1.43MB leap motion; MSP430G2553; 体感控制;
1
运输机单向运转,工作平稳,运输带速度允许速度误差为-5%~+5%,使用期限为8年,小批量生产,单班制工作。
运输带推力F=2800N,运输机速度V=1.4m/s,卷筒直径D=400mm。
2024/3/12 12:38:36 5.64MB 带式运输机 传动装置
1
本文介绍了buck变换器性能研究型实验的要点和结论。
Buck变换器的输入直流电压由三相调压器输出的单相交流电经HKDT07挂箱上的单相桥式整流及电容滤波后得到。
接通交流电源,观测波形,记录其平均值。
(注:本装置限定直流输出最大值为50V,输入交流电压的大小由调压器调节输出)
2024/3/11 10:22:23 531KB buck变换器
1
2020年大连理工大学《控制仪表及装置》期末考试卷
2024/3/4 5:23:05 833KB 控制器
1
本设计采用AT89S51单片机为核心来设计智能电热水器。
本设计也对单片机控制电热水器实现智能化的可能性进行了分析,利用温度传感器、水位检测装置、及模数转换器等来完成本设计。
在硬件设计方面,主要对单片机最小系统及其扩展、电源电路、键控及接口电路、模数转换电路、水位检测电路、报警电路进行了详细介绍。
2024/3/3 14:47:46 1.87MB proteus仿真 汇编语言 智能热水器
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡