boot2docker.iso20191224最新版本v19.03.5,下载解压后放置在C:\Users\你的电脑名\.docker\machine\cache目录下,再运转DockerQuickstartTerminal即可
2018/11/13 7:13:26 56.18MB boot2docker docker Docker windows
1
计算机组成原理与体系结构课后答案。
英文版,有具体电路以及cache等的答案阐明。
2016/4/27 15:39:04 1.38MB 计算机组成原理与体系结构
1
唐朔飞计算机组成原理1-10章答案第一章计算机系统概论1.什么是计算机系统、计算机硬件和计算机软件?硬件和软件哪个更重要?解:P3 计算机系统:由计算机硬件系统和软件系统组成的综合体。
计算机硬件:指计算机中的电子线路和物理装置。
计算机软件:计算机运行所需的程序及相关资料。
硬件和软件在计算机系统中相互依存,缺一不可,因此同样重要。
5.冯•诺依曼计算机的特点是什么?解:冯•诺依曼计算机的特点是:P8计算机由运算器、控制器、存储器、输入设备、输出设备五大部件组成;
指令和数据以同同等地位存放于存储器内,并可以按地址访问;
指令和数据均用二进制表示;
指令由操作码、地址码两大部分组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置;
指令在存储器中顺序存放,通常自动顺序取出执行;
机器以运算器为中心(原始冯•诺依曼机)。
7.解释下列概念:主机、CPU、主存、存储单元、存储元件、存储基元、存储元、存储字、存储字长、存储容量、机器字长、指令字长。
解:P9-10  主机:是计算机硬件的主体部分,由CPU和主存储器MM合成为主机。
 CPU:中央处理器,是计算机硬件的核心部件,由运算器和控制器组成;
(早期的运算器和控制器不在同一芯片上,现在的CPU内除含有运算器和控制器外还集成了CACHE)。
 主存:计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取;
由存储体、各种逻辑部件及控制电路组成。
 存储单元:可存放一个机器字并具有特定存储地址的存储单位。
 存储元件:存储一位二进制信息的物理元件,是存储器中最小的存储单位,又叫存储基元或存储元,不能单独存取。
 存储字:一个存储单元所存二进制代码的逻辑单位。
 存储字长:一个存储单元所存二进制代码的位数。
 存储容量:存储器中可存二进制代码的总量;
(通常主、辅存容量分开描述)。
 机器字长:指CPU一次能处理的二进制数据的位数,通常与CPU的寄存器位数有关。
 指令字长:一条指令的二进制代码位数。
8.解释下列英文缩写的中文含义:CPU、PC、IR、CU、ALU、ACC、MQ、X、MAR、MDR、I/O、MIPS、CPI、FLOPS解:全面的回答应分英文全称、中文名、功能三部分。
CPU:CentralProcessingUnit,中央处理机(器),是计算机硬件的核心部件,主要由运算器和控制器组成。
PC:ProgramCounter,程序计数器,其功能是存放当前欲执行指令的地址,并可自动计数构成下一条指令地址。
IR:InstructionRegister,指令寄存器,其功能是存放当前正在执行的指令。
CU:ControlUnit,控制单元(部件),为控制器的核心部件,其功能是产生微操作命令序列。
ALU:ArithmeticLogicUnit,算术逻辑运算单元,为运算器的核心部件,其功能是进行算术、逻辑运算。
ACC:Accumulator,累加器,是运算器中既能存放运算前的操作数,又能存放运算结果的寄存器。
MQ:Multiplier-QuotientRegister,乘商寄存器,乘法运算时存放乘数、除法时存放商的寄存器。
X:此字母没有专指的缩写含义,可以用作任一部件名,在此表示操作数寄存器,即运算器中工作寄存器之一,用来存放操作数;
MAR:MemoryAddressRegister,存储器地址寄存器,在主存中用来存放欲访问的存储单元的地址。
MDR:MemoryDataRegister,存储器数据缓冲寄存器,在主存中用来存放从某单元读出、或要写入某存储单元的数据。
I/O:Input/Outputequipment,输入/输出设备,为输入设备和输出设备的总称,用于计算机内部和外界信息的转换与传送。
MIPS:MillionInstructionPerSecond,每秒执行百万条指令数,为计算机运算速度指标的一种计量单位。
9.画出主机框图,分别以存数指令“STAM”和加法指令“ADDM”(M均为主存地址)为例,在图中按序标出完成该指令(包括取指令阶段)的信息流程(如→①)。
假设主存容量为256M*32位,在指令字长、存储字长、机器字长相等的条件下,指出图中各寄存器的位数。
解:主机框图如P13图1.11所示。
(1)STAM指令:PC→MAR,MAR→MM,MM→MDR,MDR→IR, OP(IR)→CU,Ad(IR)→MAR,ACC→MDR,MAR→MM,WR (2)ADDM指令:PC→MAR,MAR→MM,MM→MDR,MDR→IR, OP(IR)
1
最近我们的系统面临着严峻功能瓶颈问题,这是由于访问量增加,客户端在同一时间请求增加,这迫使我们要从两个方面解决这一问题,增加硬件和提高系统的功能。
大家可以通过各种各样的方法去优化我们系统,本篇博文将介绍通过Cache方法来优化系统的功能,减轻系统的负担。
在Web应用程序中的使用缓存位置主要有:客户端浏览器缓存、客户端和服务器中以及服务器端,因此缓存可以分为以下几类:ASP.NET中有两种缓存类型:输出缓存和数据缓存。
输出缓存:这是最简单的缓存类型,它保存发送到客户端的页面副本,当下一个客户端发送相同的页面请求时,此页面不会重新生成(在缓存有限期内),而是从缓存中获取该页面;
当然由于缓存过期或被
2021/9/11 13:33:31 427KB ASP.NETCache的一些总结
1
thisisproject2inZJU'sdigitalsystemdesign2.Itcanperformalmostallcachefunction,andanalogthestatestransferringincaches.
2016/5/12 17:08:10 3KB cache controller
1
cache数据库入门和新手指南的材料,cache是后关系型数据库比oracle查询速度快8-10倍!
2019/1/11 6:55:34 1.36MB cache
1
Cache映像策略和数据访问流功能分析
2017/9/26 2:39:54 539KB Cache映像
1
《超标量处理器设计》讲述超标量(SuperScalar)处理器的设计,现代的高功能处理器都采用了超标量结构,大至服务器和高功能PC的处理器,小至平板电脑和智能手机的处理器,无一例外。
《超标量处理器设计》以超标量处理器的流水线为主线展开内容介绍。
《超标量处理器设计》主要内容包括超标量处理器的背景知识、流水线、顺序执行和乱序执行两种方式的特点;
Cache的一般性原理、提高Cache功能的方法以及超标量处理器中的Cache,尤其是多端口的Cache;
虚拟存储器的基础知识、页表、TLB和Cache加入流水线后的工作流程;
分支预测的一般性原理、在超标量处理器中使用分支预测时遇到的问题和解决方法以及如何在分支预测失败时对处理器的状态进行恢复;
一般的RISC指令集体系的简单介绍;
指令解码的过程,尤其是超标量处理器中的指令解码;
寄存器重命名的一般性原理、重命名的方式、超标量处理器中使用寄存器重命名时遇到的问题和解决方法以及如何对寄存器重命名的过程实现状态恢复;
指令的分发(Dispatch)和发射(Issue)、发射过程中的流水线、选择电路和唤醒电路的实现过程;
处理器中使用的基本运算单元、旁路网络、Cluster结构以及如何对Load/Store指令的执行过程进行加速;
重排序缓存(ROB)、处理器状态的管理以及超标量处理器中对异常的处理过程;
经典的Alpha21264处理器的介绍。
在本书中使用了一些现实世界的超标量处理器作为例子,以便于读者加深对超标量处理器的理解和认识。
《超标量处理器设计》可用作高等院校电子及计算机专业研究生和高年级本科生教材,也可供自学者阅读。
2021/9/17 23:47:37 51.02MB 处理器
1
计算机组织结构课程计划-8位无cache五级流水CPU
2022/9/7 20:25:28 1.27MB 组织结构 8位 无cache 五级流水CPU
1
共 109 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡