ProbabilisticFoundationsofStatisticalNetworkAnalysispresentsafreshandinsightfulperspectiveonthefundamentaltenetsandmajorchallengesofmodernnetworkanalysis.Itslucidexpositionprovidesnecessarybackgroundforunderstandingtheessentialideasbehindexchangeableanddynamicnetworkmodels,networksampling,andnetworkstatisticssuchassparsityandpowerlaw,allofwhichplayacentralroleincontemporarydatascienceandmachinelearningapplications.Thebookrewardsreaderswithaclearandintuitiveunderstandingofthesubtleinterplaybetweenbasicprinciplesofstatisticalinference,empiricalpropertiesofnetworkdata,andtechnicalconceptsfromprobabilitytheory.Itsmathematicallyrigorous,yetnon-technical,expositionmakesthebookaccessibletoprofessionaldatascientists,statisticians,andcomputerscientistsaswellaspractitionersandresearchersinsubstantivefields.Newcomersandnon-quantitativeresearcherswillfinditsconceptualapproachinvaluablefordevelopingintuitionabouttechnicalideasfromstatisticsandprobability,whileexpertsandgraduatestudentswillfindthebookahandyreferenceforawiderangeofnewtopics,includingedgeexchangeability,relativeexchangeability,graphonandgraphexmodels,andgraph-valuedLevyprocessandrewiringmodelsfordynamicnetworks.Theauthor’sincisivecommentarysupplementsthesecoreconcepts,challengingthereadertopushbeyondthecurrentlimitationsofthisemergingdiscipline.Withanapproachableexpositionandmorethan50openresearchproblemsandexerciseswithsolutions,thisbookisidealforadvancedundergraduateandgraduatestudentsinterestedinmodernnetworkanalysis,datascience,machinelearning,andstatistics.HarryCraneisAssociateProfessorandCo-DirectoroftheGraduatePrograminStatisticsandBiostatisticsandanAssociateMemberoftheGraduateFacultyinPhilosophyatRutgersUniversity.ProfessorCrane’sresea
2025/12/4 9:52:13 3.24MB 网络分析
1
ProbabilisticFoundationsofStatisticalNetworkAnalysispresentsafreshandinsightfulperspectiveonthefundamentaltenetsandmajorchallengesofmodernnetworkanalysis.Itslucidexpositionprovidesnecessarybackgroundforunderstandingtheessentialideasbehindexchangeableanddynamicnetworkmodels,networksampling,andnetworkstatisticssuchassparsityandpowerlaw,allofwhichplayacentralroleincontemporarydatascienceandmachinelearningapplications.Thebookrewardsreaderswithaclearandintuitiveunderstandingofthesubtleinterplaybetweenbasicprinciplesofstatisticalinference,empiricalpropertiesofnetworkdata,andtechnicalconceptsfromprobabilitytheory.Itsmathematicallyrigorous,yetnon-technical,expositionmakesthebookaccessibletoprofessionaldatascientists,statisticians,andcomputerscientistsaswellaspractitionersandresearchersinsubstantivefields.Newcomersandnon-quantitativeresearcherswillfinditsconceptualapproachinvaluablefordevelopingintuitionabouttechnicalideasfromstatisticsandprobability,whileexpertsandgraduatestudentswillfindthebookahandyreferenceforawiderangeofnewtopics,includingedgeexchangeability,relativeexchangeability,graphonandgraphexmodels,andgraph-valuedLevyprocessandrewiringmodelsfordynamicnetworks.Theauthor’sincisivecommentarysupplementsthesecoreconcepts,challengingthereadertopushbeyondthecurrentlimitationsofthisemergingdiscipline.Withanapproachableexpositionandmorethan50openresearchproblemsandexerciseswithsolutions,thisbookisidealforadvancedundergraduateandgraduatestudentsinterestedinmodernnetworkanalysis,datascience,machinelearning,andstatistics.HarryCraneisAssociateProfessorandCo-DirectoroftheGraduatePrograminStatisticsandBiostatisticsandanAssociateMemberoftheGraduateFacultyinPhilosophyatRutgersUniversity.ProfessorCrane’sresea
2025/12/4 9:18:55 3.24MB 网络分析
1
ProbabilisticFoundationsofStatisticalNetworkAnalysispresentsafreshandinsightfulperspectiveonthefundamentaltenetsandmajorchallengesofmodernnetworkanalysis.Itslucidexpositionprovidesnecessarybackgroundforunderstandingtheessentialideasbehindexchangeableanddynamicnetworkmodels,networksampling,andnetworkstatisticssuchassparsityandpowerlaw,allofwhichplayacentralroleincontemporarydatascienceandmachinelearningapplications.Thebookrewardsreaderswithaclearandintuitiveunderstandingofthesubtleinterplaybetweenbasicprinciplesofstatisticalinference,empiricalpropertiesofnetworkdata,andtechnicalconceptsfromprobabilitytheory.Itsmathematicallyrigorous,yetnon-technical,expositionmakesthebookaccessibletoprofessionaldatascientists,statisticians,andcomputerscientistsaswellaspractitionersandresearchersinsubstantivefields.Newcomersandnon-quantitativeresearcherswillfinditsconceptualapproachinvaluablefordevelopingintuitionabouttechnicalideasfromstatisticsandprobability,whileexpertsandgraduatestudentswillfindthebookahandyreferenceforawiderangeofnewtopics,includingedgeexchangeability,relativeexchangeability,graphonandgraphexmodels,andgraph-valuedLevyprocessandrewiringmodelsfordynamicnetworks.Theauthor’sincisivecommentarysupplementsthesecoreconcepts,challengingthereadertopushbeyondthecurrentlimitationsofthisemergingdiscipline.Withanapproachableexpositionandmorethan50openresearchproblemsandexerciseswithsolutions,thisbookisidealforadvancedundergraduateandgraduatestudentsinterestedinmodernnetworkanalysis,datascience,machinelearning,andstatistics.HarryCraneisAssociateProfessorandCo-DirectoroftheGraduatePrograminStatisticsandBiostatisticsandanAssociateMemberoftheGraduateFacultyinPhilosophyatRutgersUniversity.ProfessorCrane’sresea
2025/12/4 9:03:41 3.24MB 网络分析
1
Datascienceisaninterdisciplinaryfieldencompassingscientificmethods,processes,andsystemstoextractknowledgeorinsightsfromdatainvariousforms,eitherstructuredorunstructured.Itdrawsprinciplesfrommathematics,statistics,informationscience,computerscience,machinelearning,visualization,datamining,andpredictiveanalytics.However,itisfundamentallygroundedinmathematics.ThisbookexplainsandappliesthefundamentalsofdatasciencecrucialfortechnicalprofessionalssuchasDBAsanddeveloperswhoaremakingcareermovestowardpracticingdatascience.Itisanexample-drivenbookprovidingcompletePythoncodingexamplestocomplementandclarifydatascienceconcepts,andenrichthelearningexperience.Codingexamplesincludevisualizationswheneverappropriate.Thebookisanecessaryprecursortoapplyingandimplementingmachinelearningalgorithms,becauseitintroducesthereadertofoundationalprinciplesofthescienceofdata.
2025/10/28 16:05:37 7.26MB Python MongoDB
1
使用适用于STM32F407uC的不同框架的TinyML警告:由于库包含在.gitignore中,因此必须为每个项目都生成CubeMX代码。
对于TFLite项目,必须将自动生成的main更改为.cpp,并且必须将其与main.c.中的最新更改合并。
开发IDE:KeiluVisionv6多维数据集MXAI/003MagicWand在CubeMXAI\003MagicWand\Middlewares\Third_Party\MachineLearning\edgeimpulse\model-parameters\model_metadata.h中修改以下参数:#defineEI_CLASSIFIER_RAW_SAMPLE_COUNT200#defineEI_CLASSIFIER_INTERVAL_MS10#defineEI_
2025/10/15 21:55:14 13.25MB c cpp tensorflow stm32
1
2018/2019/校招/春招/秋招/自然语言处理(NLP)/深度学习(DeepLearning)/机器学习(MachineLearning)/C/C/Python/面试笔记
2025/4/7 16:47:39 46.23MB Python开发-学习教程
1
分为作业和答案两部分,分开的资源,不用因为有答案影响自己的思路
2025/1/9 14:44:56 106.83MB 机器学习 作业 答案
1
首先,来看看CSDN的知识图谱http://lib.csdn.net/base/machinelearning/structure万般喜欢这个插件,于是就翻看源代码,抄了下来
2024/12/3 19:54:18 46KB 知识图谱 拓扑图 topo插件
1
UCBMichaelJordan写的introductiontographicalmodel,入门级介绍。
做machinelearning的同学可以看看。
一共12章,未出版手稿
2024/10/24 6:14:37 2.06MB 概率图
1
Title:MachineLearning:AnAlgorithmicPerspective,2ndEditionAuthor:StephenMarslandLength:457pagesEdition:2Language:EnglishPublisher:ChapmanandHall/CRCPublicationDate:2014-10-08ISBN-10:1466583282ISBN-13:9781466583283AProven,Hands-OnApproachforStudentswithoutaStrongStatisticalFoundationSincethebest-sellingfirsteditionwaspublished,therehavebeenseveralprominentdevelopmentsinthefieldofmachinelearning,includingtheincreasingworkonthestatisticalinterpretationsofmachinelearningalgorithms.Unfortunately,computersciencestudentswithoutastrongstatisticalbackgroundoftenfindithardtogetstartedinthisarea.Remedyingthisdeficiency,MachineLearning:AnAlgorithmicPerspective,SecondEditionhelpsstudentsunderstandthealgorithmsofmachinelearning.Itputsthemonapathtowardmasteringtherelevantmathematicsandstatisticsaswellasthenecessaryprogrammingandexperimentation.NewtotheSecondEditionTwonewchaptersondeepbeliefnetworksandGaussianprocessesReorganizationofthechapterstomakeamorenaturalflowofcontentRevisionofthesupportvectormachinematerial,includingasimpleimplementationforexperimentsNewmaterialonrandomforests,theperceptronconvergencetheorem,accuracymethods,andconjugategradientoptimizationforthemulti-layerperceptronAdditionaldiscussionsoftheKalmanandparticlefiltersImprovedcode,includingbetteruseofnamingconventionsinPythonSuitableforbothanintroductoryone-semestercourseandmoreadvancedcourses,thetextstronglyencouragesstudentstopracticewiththecode.Eachchapterincludesdetailedexamplesalongwithfurtherreadingandproblems.Allofthecodeusedtocreatetheexamplesisavailableontheauthor’swebsite.TableofContentsChapter1:IntroductionChapter2:PreliminariesChapter3:Neurons,NeuralNetworks,andLinearDiscriminantsChapter4:TheMulti-layerPerceptronChapter5:R
2024/10/14 18:47:32 6.65MB Machine Learning Algorithmic
1
共 33 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡