Title:MachineLearning:AnAlgorithmicPerspective,2ndEditionAuthor:StephenMarslandLength:457pagesEdition:2Language:EnglishPublisher:ChapmanandHall/CRCPublicationDate:2014-10-08ISBN-10:1466583282ISBN-13:9781466583283AProven,Hands-OnApproachforStudentswithoutaStrongStatisticalFoundationSincethebest-sellingfirsteditionwaspublished,therehavebeenseveralprominentdevelopmentsinthefieldofmachinelearning,includingtheincreasingworkonthestatisticalinterpretationsofmachinelearningalgorithms.Unfortunately,computersciencestudentswithoutastrongstatisticalbackgroundoftenfindithardtogetstartedinthisarea.Remedyingthisdeficiency,MachineLearning:AnAlgorithmicPerspective,SecondEditionhelpsstudentsunderstandthealgorithmsofmachinelearning.Itputsthemonapathtowardmasteringtherelevantmathematicsandstatisticsaswellasthenecessaryprogrammingandexperimentation.NewtotheSecondEditionTwonewchaptersondeepbeliefnetworksandGaussianprocessesReorganizationofthechapterstomakeamorenaturalflowofcontentRevisionofthesupportvectormachinematerial,includingasimpleimplementationforexperimentsNewmaterialonrandomforests,theperceptronconvergencetheorem,accuracymethods,andconjugategradientoptimizationforthemulti-layerperceptronAdditionaldiscussionsoftheKalmanandparticlefiltersImprovedcode,includingbetteruseofnamingconventionsinPythonSuitableforbothanintroductoryone-semestercourseandmoreadvancedcourses,thetextstronglyencouragesstudentstopracticewiththecode.Eachchapterincludesdetailedexamplesalongwithfurtherreadingandproblems.Allofthecodeusedtocreatetheexamplesisavailableontheauthor’swebsite.TableofContentsChapter1:IntroductionChapter2:PreliminariesChapter3:Neurons,NeuralNetworks,andLinearDiscriminantsChapter4:TheMulti-layerPerceptronChapter5:R
2024/10/14 18:47:32 6.65MB Machine Learning Algorithmic
1
Thisbookcoversalgorithmicandhardwareimplementationtechniquestoenableembeddeddeeplearning.Theauthorsdescribesynergeticdesignapproachesontheapplication-,algorithmic-,computerarchitecture-,andcircuit-levelthatwillhelpinachievingthegoalofreducingthecomputationalcostofdeeplearningalgorithms.Theimpactofthesetechniquesisdisplayedinfoursiliconprototypesforembeddeddeeplearning.Givesawideoverviewofaseriesofeffectivesolutionsforenergy-efficientneuralnetworksonbatteryconstrainedwearabledevices;Discussestheoptimizationofneuralnetworksforembeddeddeploymentonalllevelsofthedesignhierarchy–applications,algorithms,hardwarearchitectures,andcircuits–supportedbyrealsiliconprototypes;ElaboratesonhowtodesignefficientConvolutionalNeuralNetworkprocessors,exploitingparallelismanddata-reuse,sparseoperations,andlow-precisioncomputations;Supportstheintroducedtheoryanddesignconceptsbyfourrealsiliconprototypes.Thephysicalrealization’simplementationandachievedperformancesarediscussedelaboratelytoillustratedandhighlighttheintroducedcross-layerdesignconcepts.
2023/11/9 17:10:44 8.32MB 嵌入式
1
successful-algorithmic-trading中文与英文版(含代码)
2020/10/22 21:20:28 8.53MB successful algorithmic trading 算法交易
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡