本书主要介绍非高斯信号处理(包括基于高阶统计量和分数低阶统计量的信号处理)的理论、方法及其应用。
全书分为9章,内容包括:高斯过程与二阶统计量,高阶累积量和高阶谱,Alpha稳定分布与分数低阶统计量,基于以上信号的处理方法,基于分数低阶统计量数字信号处理的应用等。
第1章绪论1.1预备知识1.1.1信号与信号处理的概念1.1.2随机变量及其分布1.1.3随机信号及随机过程1.1.4统计信号处理的原理与方法1.2矩理论简介1.2.1矩及统计量的概念1.2.2二阶统计量及基于二阶统计量的信号处理1.2.3高阶统计量及基于高阶统计量的信号处理1.2.4分数低阶统计量及基于分数低阶统计量的信号处理1.3非高斯信号处理的发展参考文献第2章高斯分布与高斯过程2.1高斯分布2.1.1中心极限定理2.1.2高斯分布律2.2高斯过程参考文献第3章基于二阶统计量的信号处理方法3.1基本估计理论3.1.1最小二乘估计3.1.2线性最小方差估计3.1.3最小方差估计3.1.4最大似然估计3.1.5最大后验概率估计3.2维纳滤波与卡尔曼滤波3.2.1连续信号的维纳滤波3.2.2离散维纳滤波3.2.3卡尔曼滤波3.3参数模型功率谱估计3.3.1平稳随机信号的参数模型3.3.2AR模型功率谱估计3.3.3MA模型功率谱估计3.3.4ARMA模型功率谱估计3.4自适应数字滤波器3.4.1横向LMS自适应数字滤波器3.4.2递推自适应数字滤波器3.4.3自适应格型数字滤波器3.4.4递归型自适应数字滤波器参考文献第4章高阶累积量和高阶谱4.1高阶矩和高阶累积量4.1.1高阶累积量和高阶矩的定义4.1.2高阶累积量和高阶矩的关系4.1.3高阶矩和高阶累积量的性质4.1.4平稳随机过程的高阶矩和高阶累积量4.1.5随机过程的互累积量4.2随机过程的高阶累积量谱和高阶矩谱4.2.1累积量谱和高阶矩谱的定义4.2.2累积量谱的特例4.2.3k阶相干函数和互累积量谱4.3高阶谱估计的非参数方法4.3.1直接法4.3.2间接法4.4非高斯过程与线性系统4.4.1非高斯白噪声过程4.4.2非高斯白噪声过程与线性系统参考文献第5章基于高阶统计量的信号处理方法5.1基于高阶统计量的系统辨识5.1.1非最小相位系统5.1.2基于高阶统计量的系统辨识5.1.3高阶统计量用于MA系统辨识5.1.4高阶统计量用于非因果AR模型辨识5.1.5ARMA模型参数估计方法5.2有色噪声中的信号提取5.2.1复信号累积量的定义5.2.2谐波过程的累积量5.2.3高斯有色噪声中的谐波恢复5.2.4非高斯有色噪声中的谐波恢复5.3基于高阶累积量的参数模型阶数的确定参考文献第6章高阶统计量在信号处理中的应用6.1基于高阶累积量的自适应信号处理6.1.1基于高阶累积量的自适应FIR算法6.1.2基于累积量的MMSE准则6.1.3RLS自适应算法6.2高阶统计量在独立分量分析中的应用6.2.1问题的数学描述6.2.21CA问题的解法6.3基于高阶累积量的时间延迟估计6.3.1基于双谱估计的时延估计6.3.2基于互双倒谱的时延估计6.3.3自适应时延估计方法参考文献第7章Alpha稳定分布与分数低阶统计量7.1历史回顾7.1.1历史回顾7.1.2发展动因7.2Alpha稳定分布的概念7.2.1a稳定分布的概念7.2.2a稳定分布的几种特殊情况7.2.3广义中心极限定理7.2.4a稳定分布的性质7.2.5a稳定分布的概率密度函数7.2.6多变量O稳定分布7.2.7对称O稳定分布随机信号(随机过程)7.3分数低阶统计量7.3.1分数低阶矩7.3.2负阶矩7.3.3零阶矩7.3.4a稳定分布过程的分类7.3.5用于脉冲特性信号建模的其他分布7.4共变及其应用7.4.1共变的概念7.4.2共变的主要性质7.4.3共变在线性回归中的应用7.4.4复SaS分布的共变7.5对称Alpha稳定分布的参数估计7.5.1最大似然估计方法7.5.2基于样本分位数的参数估计方法7.5.3基于样本特征函数的参数估计方法7.5.4无穷方差的检验7.5.5基于负阶矩的方法7.5.6计算机模拟中的若干问题参考文献第8章基于分数低阶统计量的信号处理8.1稳定分布的参数模型方法8.1.1最
2026/1/11 15:04:25 4.09MB 统计信号 非高斯 信号处理 应用
1
SimonHaykin经典之作,值得一读
2026/1/10 8:18:18 5.87MB 神经网络 卡尔曼滤波 机器学习
1
卡尔曼滤波原理及应用仿真
2025/12/23 18:10:42 365KB 交互式多模型 卡尔曼 目标跟踪
1
用C语言实现的卡尔曼滤波+小波分析结合的数字信号处理方法
1
6轴惯性测量单元,加速度、角速度传感器MPU6050,读取数据并Kalman滤波器处理数据
2025/12/21 21:17:50 21KB imu mpu6050 kalman 卡尔曼滤波器
1
智能天线技术是现代无线通信系统中的关键技术之一,特别是在多径传播环境下的移动通信系统中,它可以显著提高信号传输的质量和容量。
MATLAB作为一种强大的数值计算和仿真平台,被广泛用于智能天线的设计、分析和优化。
下面我们将深入探讨与"智能天线原书MATLAB程序"相关的知识点。
我们要理解什么是智能天线。
智能天线是指具有自适应算法的多元素天线阵列,能够根据接收信号的特性动态调整其辐射模式,以实现空间分集、空间多工或波束赋形等功能。
在无线通信中,这些功能可以增强信号强度、降低干扰、提高系统的频谱效率。
1.**空间分集**:通过多个天线元素接收信号的不同路径,智能天线可以利用多径效应来增加信号的多样性,从而提高通信的可靠性。
2.**空间多工**:智能天线能将多个独立的数据流同时发送到不同的用户,实现多用户复用,极大提升了无线通信系统的容量。
3.**波束赋形**:通过调整天线阵列的相位权重,智能天线可以形成指向特定方向的定向波束,减少非目标方向的辐射,提高能量利用率并降低干扰。
MATLAB在智能天线领域的应用主要体现在以下几个方面:1.**信号模型与仿真**:MATLAB可以构建各种无线通信信道模型,如瑞利衰落、莱斯衰落等,模拟实际通信环境,帮助设计和分析智能天线系统。
2.**自适应算法**:MATLAB支持多种自适应算法的实现,如最小均方误差(LMS)、快速傅里叶变换(FFT)基带处理、卡尔曼滤波等,这些算法用于调整天线阵列的相位权重,实现最佳性能。
3.**阵列处理**:MATLAB提供强大的矩阵运算和信号处理工具箱,可以进行天线阵列的馈电网络设计、相位校正以及波束形成算法的开发。
4.**性能评估**:通过MATLAB的仿真,可以对智能天线系统的性能进行量化评估,如误码率(BER)、符号错误率(SER)、信噪比(SNR)等关键指标。
5.**可视化**:MATLAB的图形化界面和绘图功能,可以帮助我们直观地展示波束形状、信道特性及系统性能,便于理解和优化。
"smartantenna"这个文件可能包含了与智能天线相关的MATLAB代码,可能包括信号生成、自适应算法实现、波束形成、性能评估等方面的实例。
通过对这些代码的学习和研究,我们可以更深入地理解智能天线的工作原理,并掌握如何使用MATLAB进行相关的设计和分析。
智能天线结合MATLAB的运用,为无线通信系统提供了强大的工具,有助于我们探索和实现高性能、高效率的无线通信解决方案。
通过学习和实践"智能天线原书MATLAB程序",我们可以提升自己在这一领域的理论知识和实践经验。
2025/12/19 19:36:10 79KB 智能天线 matlab
1
基于卡尔曼滤波的数据融合算法,主要用于对陀螺仪和加速度计的数据融合
2025/12/17 13:38:33 497KB 卡尔曼滤波 数据融合
1
卡尔曼滤波C代码实现,方便移植。
STM32程序应用在四旋翼飞行器姿态测量中使用,卡尔曼滤波卡尔曼滤波卡尔曼滤波
2025/12/17 11:03:08 692B 卡尔曼滤波
1
《现代数字信号处理及其应用》系统地介绍了以离散时问随机过程为处理对象的数字信号处理理论和方法。
全书共分9章,内容包括:离散时间信号与系统,离散时间平稳随机过程,功率谱估计和信号频率估计方法,维纳滤波原理及自适应算法,维纳滤波在信号处理中的应用,最小二乘估计理论及算法,卡尔曼滤波,阵列信号处理与空域滤波,盲信号处理。
内容安排上注重概念和理论的工程应用,各章中还安排有一定的应用实例。
2025/11/24 2:35:29 85.04MB 信号处理 雷达
1
通过构造因子图(FactorGraph)关于和积算法(Sum-ProductAlgorithm)的matlab源码,借此可实现消息传递算法(MessagePropagationAlgorithm,MPA)、LDPC编解码、卡尔曼滤波、隐性马尔可夫链(HMC)等应用
1
共 310 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡