数据挖掘技术在科技信息管理中的应用研究一、数据挖掘的定义与目的数据挖掘是一种从大量数据中抽取或“挖掘”信息的过程,旨在发现数据中的潜在规律、模式和关联关系。
它不是简单的数据查询或者数据处理,而是通过特定算法对数据进行分析,以期得到非平凡的、隐含的、先前未知的且具有潜在价值的信息或知识。
这一技术对于科技信息管理尤其重要,因为它可以帮助管理者从海量信息中提取有价值的数据,为决策提供科学依据。
二、数据挖掘在科技信息管理中的应用科技管理信息化的发展导致了信息量的大幅增长,给信息的提取带来了难度。
数据挖掘技术可以有效地挖掘海量数据背后未知的规律或模式,为科技管理决策提供了有力的依据和支持。
在科技信息管理中,数据挖掘可以用来分析科技人员、科技成果、科技项目之间的关联关系,通过数据挖掘模型,发现三者之间的深层关系,为科技管理提供决策支持。
三、数据挖掘技术的分类数据挖掘技术可以分为多个类别,其中包括关联规则、决策树、聚类、分类、变化和偏差分析、回归分析、Web页挖掘等。
每种技术有其特定的适用场景和分析方法。
例如,关联规则挖掘主要通过发现不同数据项集之间的隐藏关联规则来工作,而决策树分析则是构建一个模型,用以预测目标变量的值。
四、关联规则与Apriori算法关联规则挖掘在数据挖掘中是一种重要的技术。
它通过在数据库中找出置信度和支持度都大于给定阈值的规则,揭示数据项集之间的潜在关联。
Apriori算法是挖掘布尔关联规则频繁项集的算法之一,基于两阶段频集的递推思想,主要通过逐层搜索迭代方法,从大量数据中找出项集之间的关系或规则。
该算法对于处理科技信息管理中的大量数据尤为有效。
五、数据挖掘过程数据挖掘的过程可以分为几个阶段:问题定义、数据抽取、数据预处理、数据挖掘、结果评估与表示等。
在问题定义阶段,首先要明确数据挖掘的目标和任务;
数据抽取阶段,是从数据库或数据仓库中提取相关数据;
数据预处理阶段,对提取的数据进行清洗、转换等操作,使之适合进行挖掘;
数据挖掘阶段,运用特定算法对预处理后的数据进行分析,以提取信息和知识;
最后在结果评估与表示阶段,对挖掘出的模式进行评价,并以易于理解的方式展示结果。
六、数据挖掘在安阳市科技信息管理系统中的应用实例文章中提到安阳市科学技术信息研究所利用数据挖掘技术,通过安阳市科技信息管理系统,对512名科技人员、899项科技成果和3014项科技项目进行关联分析。
通过构建数据挖掘模型,研究科技人员的年龄、职称、单位等信息与所产出的科技成果、参与的科技项目之间的关联规则。
通过这种方式,不仅能够发现隐藏的关系和规律,还能够为科技人才合理分配和科技项目管理提供参考。
七、数据准备与处理数据准备是数据挖掘过程中的首要步骤,它包括数据选择、数据预处理和数据变换等环节。
数据选择需要从现有的数据库或数据仓库中提取相关数据,形成目标数据集。
数据预处理和变换则是为了消除数据中的噪声和不一致性,提高数据质量,确保挖掘结果的准确性。
八、结论随着信息化和大数据时代的到来,数据挖掘技术已经成为科技信息管理不可或缺的重要工具。
它能够从庞大的科技信息数据库中提炼出有价值的信息,帮助管理者做出更加精准和高效的决策。
通过持续研究和实践,数据挖掘在科技信息管理中的应用将更加广泛,对科技进步的贡献也将更加显著。
2025/6/16 2:41:25 274KB
简介:
基于DBSCAN密度聚类的风电与负荷场景生成与削减模型研究,[1]关键词:密度聚类 场景削减 DBSCAN 场景生成与削减; k-mean聚类 [2]参考文档:《氢能支撑的风-燃气耦合低碳微网容量优化配置研究》第3章 [3]主要内容:代码主要做的是一个基于DBSCAN密度聚类的风电-负荷场景生成与削减模型,首先,采集风电、电负荷历史数据。
然后,通过采用 DBSCAN 密度聚类的数据预处理消除异常或小概率电负荷、风电数据。
之后,针对风电波动性与电负荷时序性、周期性特点,将场景提取分为电负荷场景提取和风电场景提取。
不同于传统的Kmeans方法,此方法更加具有创新性,场景模型与提取更具有代表性,代码非常nice ,核心关键词:DBSCAN; 密度聚类; 场景生成与削减; k-mean聚类; 风电场景提取; 电负荷场景提取,"基于DBSCAN密度聚类的风电-负荷场景生成与削减模型研究"
2025/6/15 19:52:33 288KB
搜狗语料库,自己用结巴分词分好的。
(为什么摘要必须大于50个字)
2025/6/12 21:04:15 16.3MB 语料库;分词
阿伦方差的讲解文献,关于时频分析、噪声分析、红外光学检测误差分析等,还有matlab源代码
2025/6/11 11:23:15 4.94MB 阿伦方差
pdf密码:密码dsjsfcHbase是一种NoSQL数据库,这意味着它不像传统的RDBMS数据库那样支持SQL作为查询语言。
Hbase是一种分布式存储的数据库,技术上来讲,它更像是分布式存储而不是分布式数据库,它缺少很多RDBMS系统的特性,比如列类型,辅助索引,触发器,和高级查询语言等。
2025/6/11 0:47:27 3.44MB hbase 大数据
数理统计学导论第五版参考答案(第6-9章)R.V霍格
2025/6/10 22:13:11 801KB 数理统计
R语言windows安装包
2025/6/10 15:44:36 84.46MB R语言安装包 R-4.0.4-win.exe
认知无线电的matlab的软件编程设计仿真。
2025/6/9 19:08:18 23KB cr
支持向量机二分类图像,matlab代码实现
2025/6/9 6:31:06 1KB svm
JAVAWEB校园二手平台项目的源代码和论文JAVAWEB校园二手平台项目,基本功能包括:个人信息、商品管理;
交易商品板块管理等。
本系统结构如下:(1)本月推荐交易板块: 电脑及配件:实现对该类商品的查询、用户留言功能 通讯器材:实现对该类商品的查询、用户留言功能 视听设备:实现对该类商品的查询、用户留言功能 书籍报刊:实现对该类商品的查询、用户留言功能 生活服务:实现对该类商品的查询、用户留言功能 房屋信息:实现对该类商品的查询、用户留言功能 交通工具:实现对该类商品的查询、用户留言功能 其他商品:实现对该类商品的查询、用户留言功能(2)载入个人用户: 用户登陆 用户注册(3)个人平台: 信息管理:实现对商品的删除、修改、查询功能 添加二手信息:实现对新商品的添加 修改个人资料:实现对用户个人信息的修改 注销
2025/6/9 0:27:02 31.14MB Java jsp web MySQL
共 1000 条记录 首页 上一页 下一页 尾页